US09955572B2
A polyimide polymer represented by the following formula 1 is provided. In formula 1, Ar is Ar′ is A is and 0
US09955569B2
A multi-layer printed circuit board comprises: a core comprising a core insulation layer and traces formed on two sides of the core insulation layer; a plurality of insulation layers sequentially formed at two sides of the core; and a plurality of trace layers respectively formed between two insulation layers and on the outmost insulation layers; wherein the core insulation layer contains a resin material different from that of the insulation layers, such that the core insulation layer has a dimensional stability superior to that of the insulation layers.
US09955554B2
A lighting control system and method for association of nodes in a multi-node network. The system includes a number of lighting nodes forming a multi-node network, each lighting node including a light source, a controller connected to the light source, and communication means connected to the controller. The lighting control system further includes a memory component adapted to store information relating to at least one group of interrelated coordinates defined in a geographical coordinate system and a processing component in communication with the lighting nodes and adapted to automatically associate at least one lighting node with the at least one group on the basis of the geographical location of said at least one lighting node.
US09955552B2
In an example, an expected sky condition is calculated for a geographic location, a time of day, and a date based on a mathematical model. A predicted distribution of direct and interreflected solar radiation within the environment is calculated based on the expected sky condition. Measurement data from one or more photosensors is obtained that provides measurements of an initial distribution of direct and interreflected radiation within the environment, including radiation from solar and electrical lighting sources. A target distribution of direct and interreflected artificial electromagnetic radiation produced by electrical lighting is determined, based on the measurement data and the predicted distribution of direct and interreflected solar radiation, to achieve the target distribution of direct and interreflected radiation within the environment. Output parameters are set to one or more devices to modify the initial distribution to achieve the target distribution of direct and interreflected radiation within the environment.
US09955546B1
A color-changing lighting system includes a color temperature meter for determining a color temperature of visible light within an environment. The color-changing lighting system also includes a microprocessor for converting the color temperature of the visible light to red, green, and blue (RGB) values. The color-changing lighting system further includes a light control unit for calibrating a full spectrum color changing light source to output light having the color temperature of the visible light within the environment, according to the RGB values.
US09955524B2
Provided are a communication method of a terminal in a wireless communication system and the terminal using the method. The method comprises: receiving a cell state signal from a small cell; and communicating with the small cell on the basis of the cell state signal, wherein the cell state signal includes information indicating the switching of the small cell to an off-state.
US09955522B2
A wireless device has a WiFi transceiver and a WWAN transceiver. A programmed processor is configured to connect the WiFi transceiver to an access point and while connected, operate in a learning mode in which WWAN signals are characterized at a location of the WiFi access point and stored as an access point characterization. When a connection to the AP is lost, operating in a monitoring mode in which WWAN signals are compared to the stored access point characterization with the WiFi transceiver disabled. When the WWAN signals match the WiFi AP characterization the WiFi transceiver is enabled to reconnect to a WiFi AP.
US09955516B2
A first wireless-conferencing radio and a second wireless-conferencing radio communicate directly with each other. After a connection is lost, the first radio automatically dials a phone number to the second radio and the first radio connects with the second radio using a cell tower.
US09955515B2
[Object] To propose a wireless communication apparatus that is capable of connecting to the Internet more easily.[Solution] Provided is a wireless communication apparatus including: a first wireless communication unit configured to wirelessly communicate with a wireless terminal having subscriber identification information for a first network; a second wireless communication unit configured to connect to a second network to perform wireless communication; and a control unit configured to receive authentication information based on the subscriber identification information from the wireless terminal by the first wireless communication unit, and perform authentication to the second network using the authentication information by the second wireless communication unit.
US09955510B2
Disclosed are a method and a terminal for a distributed access. The terminal maps data channels to be allocated in a plurality of data channels included in a frame and map scheduling priorities. In this case, the terminal determines positions of resources of a first message as a resource request message and a second message as a response message for the first message in the first channel.
US09955499B2
Examples disclosed herein relate to the scheduling and transmission of timing measurements between mobile computing devices in an area to determine the devices' locations. A bulk fine timing measurement (BFTM) allocation message is generated by a scheduling mobile computing device that identifies other mobile computing devices in the area. The BFTM allocation message generated by the scheduling mobile computing device indicates a time of delivery (TOD), a scheduling order for the identified mobile computing devices, and a contention-free period for the mobile computing devices to transmit the timing measurement messages. The mobile computing devices generate BFTM timing message, which include times of arrival (TOAs) or propagation timing estimates, associated with message from other devices. The scheduling order indicates a sequence of transmissions (e.g., a forward and reverse sequence) in which the responding mobile computing devices are to transmit the BFTM timing messages, which are used in location-detection services.
US09955495B2
The present invention provides an apparatus and a method for controlling coexistence interference within a device in a wireless communication system. The method discloses the following steps: performing triggering, in which a transmission, which is generated in a terminal, in a first frequency band of a first network system requests controlling of interference on a reception, which is generated in the terminal, in a second frequency band of a second network system; transmitting to a base station support information including information on a time section that can or cannot be used by the first network system of the second network system, due to the interference; and receiving from the base station reply information for accepting or denying interference control as a reply to the support information.
US09955493B1
A system and method for carrying out wireless communications at a vehicle, wherein the vehicle comprises a wireless communications device and a plurality of vehicle system modules, wherein the method is carried out by the wireless communications device. The method can include the steps of: receiving an anticipatory vehicle ignition termination signal; setting the wireless communications device to operate in a station mode; detecting the presence of a wireless access point using the wireless communications device in the station mode; providing an indication to at least one of the vehicle system modules of the presence of the wireless access point; establishing a wireless connection between the wireless communications device and the wireless access point; and communicating data between the wireless access point and one or more vehicle system modules via the established wireless connection using the wireless communications device.
US09955479B2
A method for transmitting a sounding reference signal (SRS) by a user equipment (UE) in a wireless communication system supporting Time Division Duplex (TDD) includes: receiving transmission comb (TC) information indicating any one of a total of 4 TCs supported by a 4-TC SRS; mapping the 4-TC SRS to an SRS symbol of an Uplink Pilot Time Slot (UpPTS) of a TDD special subframe based on the TC information; and transmitting the 4-TC SRS through the UpPTS. In the mapping of the 4-TC SRS, the 4-TC SRS is mapped in a unit of 1 resource element (RE) per 4 REs on the SRS symbol based on a TC indicated by the TC information. The transmission of the 4-TC SRS is supported when a plurality of symbols are configured in the UpPTS.
US09955477B2
A method for controlling a cell state corresponding to whether to transmit a signal, on a subframe basis by an evolved Node B (eNB) in a wireless communication system is provided. The method includes determining a cell state of at least one subframe included in each of an N-th frame and an (N−1)-th frame, and at the start of the N-th frame, transmitting to a user equipment (UE), information about cell states of all subframes belonging to the N-th frame and information about cell states of all subframes belonging to the (N−1)-th frame.
US09955475B2
A method, management method and system for performing cell combination on a plurality of small cells are provided. In the combination method, a signal node (SN) receives position information sent from each small cell connected to the SN, and groups the small cells under a preset algorithm according to the received position information, such that small cells in a same group share a local cell serial number; a radio network connector (RNC) acquires all of the local cell serial numbers from the SN and maps each of the local cell serial numbers to a respective logical cell serial number.
US09955471B2
A mobile station (MS) communicates with a base station (BS) by a carrier aggregation using a plurality of downlink component carriers (DCCs). The MS receives on one or more activated DCCs. The MS receives using a PDCCH on one of activated DCCs, from the BS, first information including an information field for requesting a transmission of channel state information (CSI), the first information being used for scheduling of a PUSCH. The MS transmits using the PUSCH in a first subframe on an uplink component carrier, to the BS, first CSI for more than one activated DCCs. The MS transmits using the PUSCH in a second subframe on the uplink component carrier, to the BS, second CSI for only one activated downlink component carrier. The transmission of the second CSI is scheduled by the first information received using the PDCCH on the only one activated downlink component carrier.
US09955466B2
A method and an apparatus for a User Equipment (UE) to receive a first type of a Physical Downlink Control CHannel (PDCCH) or a second type of a PDCCH in a Transmission Time Interval (TTI) are provided whereby the first type of PDCCH and the second type of PDCCH convey respective Downlink Control Information (DCI) formats containing Cyclic Redundancy Check (CRC) bits scrambled with a Radio Network Temporary Identifier (RNTI). The method includes receiving by the UE a first bitmap associated with a number of TTIs equal to the first bitmap size, wherein each element of the first bitmap indicates whether a TTI is of a first type or of a second type, decoding by the UE only PDCCH of the first type if the TTI is of the first type, and decoding by the UE only PDCCH of the second type if the TTI is of the second type.
US09955464B2
Disclosed are a method and device for R-PDCCH transmission in the scenario of carrier aggregation. By way of applying the technical solution of the embodiments of the present invention, multi-carrier aggregation transmission is supported between the relay node and the base station. The base station sends a component carrier carrying the R-PDCCH to the relay node and schedules the resources in each component carrier by way of the R-PDCCH carried in the component carrier. Thus what is achieved is that the base station communicates with the relay node by way of a plurality of aggregated component carriers, enabling the link transmission resources between the base station and the relay node to support multi-carrier PDCCH scheduling, improving the transmitting capacity of the link between the base station and the relay node, and improving the system performance.
US09955461B2
PUCCH resource determination for HARQ-ACK transmission in response to ePDCCH-scheduled PDSCH or ePDCCH-indicated SPS release in a TDD radio communication system. Downlink control information (DCI) is received in a downlink subframe via an Enhanced Physical Downlink Control Channel (ePDCCH). A resource index for a Physical Uplink Control Channel (PUCCH) resource is determined, based on the lowest enhanced Control Channel Element (eCCE) index of the received DCI, a device-specific offset value, and an index i that identifies the downlink subframe in a pre-determined set of one or more downlink subframes associated with an uplink subframe. The PUCCH resource is determined according to a formula that results in a sequential allocation of PUCCH resources in the uplink subframe with respect to the downlink subframes associated with the uplink subframe, for each of a plurality of sets of ePDCCH resources. HARQ feedback is transmitted in the uplink subframe, in the indexed PUCCH resource.
US09955454B2
A device and method for automatic notification customization is provided. The device includes: a controller; a notification device; and a memory storing: notification data; and identification data, the identification data comprising one or more of: an identifier of the device; and an account identifier identifying an account associated with the device. The controller: alters the notification data using the identification data to generate altered notification data; determines that a notification of an event is to occur at the device; and controls the notification device to provide the altered notification.
US09955449B2
Provided are a method and an apparatus for detecting the locations of terminals in a multi-node system. A plurality of nodes transmit location reference signals which are distinguished by node, and a terminal performs feedback of channel information on each node using the location reference signals. Various signaling for detecting the locations of the terminals may be performed for each node, that is, for each point, rather than cell-based signaling.
US09955448B2
Disclosed is a control method and electronic device, where the method includes: acquiring subscriber identification information sent by a second electronic device, where the subscriber identification information is identification information registered by the second electronic device at a network side; based on the acquired subscriber identification information, registering at the network side through a second communication connection; and detecting a connection state of a first communication connection to the second electronic device, where if the first communication connection to the second electronic device is detected to meet a first predetermined condition, sending a log-off request to the network side through the second communication connection to enable the second electronic device to perform a registration operation based on the subscriber identification information.
US09955446B2
Methods, systems, and apparatus are disclosed for determining accurate ranging measurements between communication devices. Various embodiments are described for recording timestamps associated with when transmissions are sent and received between the communication devices. The communication devices are configured to determine a difference in their clock frequencies and to communicate this difference with one another. Furthermore, each of the communication devices is configured to compensate for these differences before or after the timestamps are exchanged and to send a compensation indicator of whether the compensation has been performed. If the compensation has not been performed, either of the communication devices can compensate for the clock frequency differences after receiving the timestamps based on the compensation indicator. By using compensated clock frequencies based on a single clock reference, highly accurate ranging measurements are obtained using round trip propagation time calculations.
US09955443B2
A system for synchronizing nodes in a wireless network comprises a first node and a second node. The first node comprising a transmitter, a receiver, and a first time keeper. The second node comprising a transmitter, a receiver, a second time keeper, a timing error measurer for making a timing error measurement between the first time keeper and the second time keeper. The second timekeeper is adjusted to target minimizing the timing error measurement.
US09955440B2
Previously available network monitoring and management systems fail to provide adequate transmit power control in WiFi networks having multiple neighboring wireless access points. By contrast, various implementations disclosed herein include systems, methods and apparatuses that generate an interference map based at least on co-channel interference reported in a number of neighbor lists, wherein each of the neighbor lists is associated with a respective one of a plurality of compliant wireless access points included in one of a local area network (LAN) and a portion of a virtual LAN (VLAN); and determine a respective transmit power adjustment for each of the plurality of compliant wireless access points included in the interference map based on at least one interference criterion characterizing the interference on each of the plurality of compliant wireless access points included in the interference map and respective neighboring wireless access points.
US09955439B2
A wireless communication apparatus supports at least a second wireless communication scheme between a first wireless communication scheme and the second wireless communication scheme. The first wireless communication scheme requires that a wireless medium is determined to be busy when a reception level is equal to or greater than a minimum reception sensitivity level of a physical scheme. The apparatus includes a first processing unit and a second processing unit. The first processing unit is configured to set a value lower than a maximum transmission power of the first wireless communication scheme, for a maximum transmission power of the second wireless communication scheme and set a value greater than the minimum reception sensitivity level of the physical scheme, for a carrier sense level, when the second wireless communication scheme is used. The second processing unit is configured to carry out carrier sense using the carrier sense level.
US09955436B2
Communication network architectures, systems and methods for supporting a network of mobile nodes. As non-limiting examples, various aspects of this disclosure provide systems and methods for adapting fixed access point coverage and/or power input/output in a network of moving things that may include autonomous vehicles.
US09955429B2
In one example, an apparatus comprises a battery that has a first characteristic capability for providing continuous power and a second characteristic capability for providing intermittent power to the apparatus. The apparatus further comprises an illumination unit. The apparatus further comprises a controller that is configured to determine the total current consumption of the apparatus, determine the amount of battery current available to the illumination unit, and adjust current consumption of the illumination unit based on the determined available amount of battery current to ensure that the current consumption of the illumination unit stays below a battery safety circuit current limit.
US09955427B2
Methods and apparatus for power optimization in e.g., a wireless mobile device. In one embodiment, the optimization is effected via intelligent idle mode current drain management. In an exemplary LTE cellular network context, the user equipment (UE) only powers on its transceiver for a subset of Discontinuous Reception (DRX) cycles based on e.g., the quality of the radio environment, power considerations, location, etc. For example, if a UE has not moved, and its radio reception quality is good, the UE is likely to successfully receive a paging notification (i.e., without multiple attempts). Consequently, the UE configures itself to receive only a single paging indication.
US09955426B2
Apparatuses and methods to operate a display device of an electronic device. In some embodiments, a method includes receiving a user setting of a display control parameter, and altering, based on the user setting, an effect of an ambient light sensor value (ALS) on control of the display control parameter. Also, according to embodiments of the inventions, a method of operating a display of an electronic device includes receiving a change to one of a display brightness output level and an ambient light sensor output level, and altering, according to the change, a display contrast output level. In some embodiments, a method of operating a proximity sensor of an electronic device includes receiving a light sensor output, and altering, according to the output, an on/off setting of a proximity sensor. Other apparatuses and methods and data processing systems and machine readable media are also described.
US09955424B2
Methods and apparatus for enhanced power save protocol are provided. In one aspect, a message to two or more stations is transmitted, the message requesting the two or more stations to transmit buffered unit requests concurrently at a specified time. The buffered unit requests are then received concurrently from each of the stations.
US09955418B2
A central transmits, to a peripheral connected with the central, re-connection information indicating a timing of a re-connection after a disconnection. Subsequently, the central executes a connection discontinuing process based on the re-connection information. In addition, the central controls power supply for wireless communication at a timing determined based on the re-connection information. Thereafter, the central executes a re-connection process with the peripheral based on the re-connection information shared therewith prior to the disconnection.
US09955413B2
Embodiments of the present invention provide a roaming network access method and apparatus, where the method includes: searching, by user equipment, for at least one available network in a roaming area; acquiring, by the user equipment, historical roaming information, where the historical roaming information is used to record information about a network to which a registration attempt has been made when a user roams; adjusting, by the user equipment, a priority of the at least one found available network according to the historical roaming information; and successively selecting, by the user equipment in descending order of an adjusted priority of the at least one found available network, the at least one found available network as a registration attempt network, and attempting to register with the registration attempt network.
US09955408B2
A method includes determining, at a first eNodeB (eNB) associated with a first cell of a network, that a first user equipment (UE) is to engage in a device discovery process. The method also includes coordinating parameters of the device discovery process with a second eNB. The second eNB is associated with a second cell of the network and with a second UE. The parameters define one or more resources to be used in the first and second cells during the device discovery process. The method further includes communicating at least some of the parameters to the first UE. The device discovery process includes a process in which the first UE identifies one or more other UEs with which the first UE is able to engage in device-to-device communications.
US09955399B2
Provided are a method performed by a user equipment in a wireless communication system and a user equipment performing the method. The method determines whether system information for a multicast broadcast multimedia service (MBMS) is a broadcast from a neighboring cell and reselects a cell by applying a highest priority to the frequency of a neighboring cell when the system information for the MBMS is the broadcast.
US09955397B2
A cell handover method and a terminal, where the method includes acquiring information about at least one candidate cell, performing priority sorting on the at least one candidate cell according to strength of interference to a received signal of a code division multiple access (CDMA) network of each candidate cell in the at least one candidate cell, sending a sorting result to a base station, receiving an indication message sent by the base station, where the indication message includes at least information about a target cell, performing a handover to the target cell according to the indication message, and hence interference to a received signal may be effectively prevented or reduced after a cell handover, communication quality and user experience are ensured, and additional network overheads and hardware design costs and complexity thereof are not increased.
US09955392B2
Techniques for use in selecting a base station transceiver system for communication with a mobile station are described. The mobile station is connected to a first base station transceiver system, and scans to identify a second base station transceiver system for communication. The mobile station further identifies that the second base station transceiver system provides a predetermined communication service, and that the first base station transceiver system fails to provide the predetermined communication service. In response to identifying, the mobile station causes the second base station transceiver system to be selected for communication over the first base station transceiver system even if the signal quality of the second base station transceiver system is worse than that of the first base station transceiver system. Identifying whether the first and second base station transceiver system provide the predetermined communication service is based on parameters transmitted from the first and second base station transceiver systems.
US09955388B2
A method for transmitting a status report in a communication system based on multiple Radio Access Technologies (RATs) is provided. The method includes, when missing sequence numbers are detected from sequence numbers of packets stored in a reception buffer, identifying whether there are one or more sequence numbers which have not been received due to a transmission delay time difference between the multiple RATs in the missing sequence numbers, and when there are one or more sequence numbers in the missing sequence numbers, delaying transmission of the status report.
US09955385B2
Coverage enhancement (CE) levels by Machine Type Communication (MTC) devices may identify a first bundling level indicating a number of redundant versions of information to be transmitted to a receiver in a control channel transmission. The CE levels may also identify a second bundling level indicating a number of redundant versions of information to be transmitted to the receiver in a shared channel transmission. The CE levels may also set an indicator in a control information field to indicate the second bundling level based on the first bundling level and the second bundling level.
US09955382B2
There is provided handling of wireless links in a wireless backhaul network. Load information from an end-user access network and from a wireless backhaul network is acquired. A current network topology of the wireless backhaul network is associated with a current performance value as a function of the acquired load information. An estimated performance value for a new network topology is provided according to which at least one wireless link for a client node has been redirected from a current hub node sector to a new hub node sector. The at least one wireless link is redirected according to the new network topology in a case the estimated performance value is higher than the current performance value.
US09955375B2
A method for sensing measurement gap scheduling includes allocating a new supplementary carrier in a license-exempt spectrum by a radio resource management (RRM) entity in an evolved Node B (eNB); configuring a local cognitive sensing entity in the eNB by the RRM entity; configuring a wireless transmit/receive unit (WTRU) for cognitive sensing through radio resource control (RRC) signaling, the RRC signaling being generated by the eNB; configuring a local cognitive sensing entity at the WTRU by a dynamic spectrum management (DSM) entity; and signaling a start and a duration of a measurement gap to an enhanced sensing component.
US09955370B2
A method and apparatus for controlling interference in a wireless communication system are disclosed. A method for measuring inter-cell interference by a pico eNB in a wireless communication system includes: receiving transmission information of a dummy signal to be transmitted on at least one candidate carrier from a neighbor pico eNB; scheduling at least one user equipment (UE) served by the pico eNB to measure the dummy signal based on the transmission information; receiving a measurement value of the dummy signal from the at least one UE; and transmitting a measurement report of the dummy signal based on the measurement value to the neighbor pico eNB, wherein the dummy signal transmission information is specified for each of a plurality of subframe sets of the at least one candidate carrier.
US09955367B2
An apparatus and a method for feeding back data receiving status, applied to a system, are provided. The method includes sequencing, by a User Equipment (UE), downlink subframes for transmitting data with respect to each Component Carrier (CC), generating receiving status feedback information for the first X downlink subframes with respect to each CC according to the result of the sequencing, where X≤M, wherein M is the number of downlink subframes on each CC, and transmitting the receiving status feedback information generated with respect to each CC to a base station. Accordingly, the UE will not misinterpret the receiving status for the downlink subframes due to inconsistencies with the base station between transmitting and receiving feedback. This affects the Hybrid Automatic Repeat Request (HARQ) transmission, saves the uplink overheads occupied by the receiving status feedback information, and increases the uplink coverage area.
US09955366B2
A method for configuring a cell is provided. Configuration information of a first cell is obtained, wherein the configuration information comprises position information of one or more multicast broadcast single frequency network (MBSFN) sub-frames in a radio frame of the first cell. A radio frame of a second cell is configured according to the configuration information of the first cell. In the method for configuring the cell, interference between the first cell and the second cell is reduced.
US09955364B2
A mobile telecommunications network includes a core and a radio access network having radio means for wireless communication with mobile terminals registered with the network, wherein the radio access network includes control means 700 operable to control the use of network resources by the mobile terminals. The control means processes control plane signalling.
US09955363B2
A communication system is provided that, if a large number of small cells are installed, is capable of configuring an operation suitable for small cells through simple operation and administration. If a small cell installed in Step ST1401 judges in Step ST1403 that a coverage macro cell, which includes the small cell in the coverage of the coverage macro cell, is present as a result of neighbor cell search in Step ST1402, notifies the coverage macro cell and another neighbor cell of its own capability in Steps ST1404 and 1405. The coverage macro cell selects a configuration parameter suitable for the capability of the small cell in Step ST1406 and notifies the small cell in Step ST1407. The small cell recognizes an operation mode configured by the coverage macro cell from the configuration parameter notified from the coverage macro cell, and then, starts operating in the operation mode.
US09955360B2
A relay apparatus relays a signal received from a transmitting apparatus to a receiving apparatus, and includes a receiver configured to receive a signal from the transmitting apparatus, and a transmitter configured to repeatedly transmit a predetermined symbol interval of the received signal to the receiving apparatus.
US09955355B2
A system that identifies a number of secondary systems located in a first geographical area; identifies a primary resource available to be assigned to the secondary systems, the primary resource being a resource to which a primary system has a priority usage right; determines whether the number of secondary systems located in the first geographical area exceeds a predetermined threshold value; and limits a number of secondary systems to which the primary resource is assigned when it is determined that the number of secondary systems located in the first geographical area exceeds the predetermined threshold value.
US09955347B2
The invention relates to a technique of pairing a device (10-12) with a co-ordinating entity (20) of a private wireless network (1). The co-ordinating entity obtains an identifier of the device to be paired and a temporary network identifier specific to the device. The co-ordinating entity then configures itself on standby awaiting the device identified on the temporary network. The device to be paired transmits a request for association with the temporary network to the co-ordinating entity on the temporary network. The co-ordinating entity verifies that the device that transmitted the request for association corresponds to the device identified and then transmits to it on the temporary network an encryption key associated with the private wireless network and an identifier of the private network, then instructs a toggling of the device from the temporary network to the private wireless network. The device to be paired then restarts on the private network and transmits a request for association to the private network on the private network. The co-ordinating entity and the device identified are then associated.
US09955345B2
Mobile and in particular Internet of things (IoT) devices have access point names (APN) for identifying network servers with which they are supposed to communicate. Disclosed are network devices and methods for APN virtualization to manage the mobile devices. The network device may replace an original APN with an assigned APN by looking up the mobile device in a database, based on a device identification. The modified APN is then used in a standard DNS lookup.
US09955332B2
A master wireless device and a child wireless device execute respective device activation sequences. On the child wireless device, the activation sequence displays, on a display of the device, a non-textual image representing a unique child device credential. On the master wireless device, the activation sequence prompts a user to capture a digital picture of the child wireless device screen. The master wireless device presents its own credentials, along with information from the digital picture, to a service management system in a network, allowing the service management system to verify that the master wireless device is associated with a subscriber and is allowed to configure a child device, as well as verify the child device. Upon successful verification, the service management system activates the child wireless device to the subscriber account of the master wireless device.
US09955329B2
Provided is a mobile wireless communication system that improves response immediacy in a wireless communication system using an SCPC communication system. For this purpose, a base station and/or a plurality of mobile stations is provided with a number-of-channels switching means that monitors the communication state to create determination information for determining the necessity of switching the number of channels, and that switches the ratio of the number of channels for downlink communications and that for uplink communications, in a case where a change in the number of channels is necessary on the basis of the determination information.
US09955328B2
A device automatically is configured to the emergency alert system (EAS) channel utilized by the location from which the device registers with a network. In an example configuration, an EAS server provides a mobile switching center (MSC) configuration information regarding the emergency alert channels to be used for the cellular sites supported by the MSC. When the mobile device registers via a cellular site supported by the MSC, the designated channel to be used for EAS messages is sent to the mobile device as part of the registration process. The mobile device assigns an internal channel to the designated channel. In another example configuration, the mobile device is preconfigured with a table listing all possible EAS channels, and the MSC provides, during the registration process, a pointer to the appropriate portion of the table.
US09955325B2
A system may include a sensor system and a control system configured for communication with the sensor system. The sensor system may include an ultrasonic sensor system. The control system may be capable of determining, based at least in part on signals from the ultrasonic sensor system, whether a personal medical device is within a predetermined distance from the mobile device. The control system may be capable of adjusting one or more mobile device settings in response to a determination that the personal medical device is within the predetermined distance of the mobile device.
US09955318B1
A guidance system for helping users locate specific affordance configurations for use within an enterprise space, the system comprising a stationary display field located within the enterprise space, the display field controlled to present guidance information to a system user, a database storing affordance configuration schedules and user schedules, a processor programmed to automatically perform the steps of obtaining location information for a set of users within the enterprise space, for at least a first user proximate the display field, examining the first user's schedule information to identify locations of activities scheduled for the first user within a threshold period of time, identifying at least one affordance configuration within the enterprise space that is proximate the locations of the activities scheduled for the first user within the threshold period of time and automatically presenting the identified at least one affordance configuration via the display field as a suggestion to the first user while the first user is proximate the display field.
US09955313B1
A power service receives one or more types of individual current usage from one or more battery enabled devices. The power service receives a user schedule of predicted usage for the one or more battery enabled devices. The power service analyzes the one or more types of current usage and the predicted usage to identify a separate recommended charging time and charging location for each of the one or more battery enabled devices. The power service updates the user schedule to specify at least one event for scheduling each separate recommended charging time and charging location for each of the one or more battery enabled devices.
US09955311B2
A control apparatus of the present invention includes: a detection unit that detects a position of a terminal apparatus, based on position information which is acquired from plural radio beacons by the terminal apparatus; a memory that stores a history of the position of the terminal apparatus as route information, based on the position detected by the detection unit; and a determination unit that determines whether or not a current position, at which the terminal apparatus is detected, is correct, based on route information of plural terminal apparatuses stored in the memory.
US09955309B2
It is inter alia disclosed to obtain or generate a plurality of sets of positioning reference data, at least one set of positioning reference data of the plurality of set of positioning reference data comprising a respective position information obtained or generated based on position-related information from at least one sensor, and comprising a respective signal characteristic representation associated with at least one received signal from at least one wireless coverage providing entity.
US09955305B2
A tracking system can provide intervention notifications to a user to notify the user that a tracking device is potentially lost or is in a predicted state. The tracking system may notify the user that a tracking device is potentially lost or in a predicted state based on a number of factors, including: a proximity of a tracking device to other tracking devices or a user's mobile device, a movement of a tracking device to more than a threshold distance away from a mobile device or other tracking devices, a location of a tracking device relative to a geographic location or to geographic boundaries, a usage or movement behavior of the tracking device, a usage or movement behavior of a user or owner of a tracking device, information received from an external source, or information received from sensors within the tracking device or a user's mobile.
US09955304B1
A server has a processor and a memory connected to the processor. The memory stores instructions executed by the processor to collect scan lists from client devices, where each scan list specifies a Wi-Fi access point identifier collected by a client device and geographic coordinates of the client device when the Wi-Fi access point identifier was collected. A cluster of geographic coordinates around a designated Wi-Fi access point is formed. A centroid within the cluster is identified. The location of the centroid is ascribed the geographic position of the designated Wi-Fi access point. The geographic position of the designated Wi-Fi access point is added to a Wi-Fi access point location database. A Wi-Fi tag scan list is processed to form a tag path listing known geographic locations of Wi-Fi access points observed by the Wi-Fi tag. The tag path is supplied in response to a request.
US09955296B2
A temperature control apparatus for controlling operation of at least one temperature-modifying device includes a housing, a wireless communication module configured to communicate with a remote Internet-based server, and a controller in communication with the wireless communication module. The controller is configured to: (i) control operation of the temperature modifying device in response to a comparison of a measured ambient temperature with a setpoint temperature, (ii) in a user-selectable first mode of operation, during a first time period during a day, poll the remote server at a first rate of at least six times per hour, using the wireless communication module, for an instruction to change the setpoint temperature, and (iii) in the first mode of operation, during a second time period, poll the remote server at a second rate that is lower than the first rate, using the wireless communication module, for an instruction to change the setpoint temperature.
US09955295B1
A method and system for using a positioning reference signal (PRS) of a cell to indicate an operational state of the cell. The cell could have two or more candidate PRS configurations defining physical configurations of its PRS, such as frequency positions of air interface resources that carry the cell's PRS. One such PRS configuration could correspond with one operational state of the cell (e.g., heavy cell load), and another such PRS configuration could correspond with a different operational state of the cell (e.g., normal or light cell load). A base station could thus select and apply a particular PRS configuration to indicate operational state of the cell. And an entity such as a wireless client device or neighboring base station could determine the PRS configuration used in the cell as a way to determine the operational state of the cell.
US09955288B2
An electronic device, including a short-range wireless communicator; and a controller configured to search for at least one display device connected to the electronic device through the short-range wireless communicator, group the at least one display device into at least one group, make a determination whether to deliver content information to the at least one group, and control the short-range wireless communicator to deliver group-specific content information to the at least one group based on the determination.
US09955284B2
The present disclosure relates to a sensor network, machine type communication (MTC), machine-to-machine (M2M) communication, and technology for internet of things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method for transmitting a beacon frame signal by a transmitting node in a wireless communication network is provided. The method includes transmitting a first type beacon frame signal; and transmitting a second type beacon frame signal after preset time from time at which the first type beacon frame signal is transmitted, wherein nodes other than the transmitting node are incapable of transmitting the first type beacon frame signal while the first type beacon frame signal is transmitted, and wherein the nodes other than the transmitting node are capable of transmitting the second type beacon frame signal while the second type beacon frame signal is transmitted.
US09955283B2
A communication system for supporting machine type communication within a cellular communication network is described in which a communication device is allocated a permanent offline area in which the communication device is expected to be located whilst not attached for communication within the network. The communication device identifies a cell in which the communication device is currently located and determines whether or not the cell forms part of the permanent offline area or a temporary offline area that comprises a previously visited cell that is not part of the permanent offline area. If these areas do not comprise the cell in which the communication device is currently located, the communication device attaches to the network and communicates information identifying the cell in which the communication device is currently located to the network.
US09955278B2
The present document relates to the field of encoding and decoding of audio. In particular, the present document relates to encoding and decoding of an audio scene comprising audio objects. A method (400) for encoding metadata relating to a plurality of audio objects (106a) of an audio scene (102) is described. The metadata comprises a first set (114, 314) of metadata and a second set (104) of metadata. The first and second sets (104, 114, 314) of metadata comprise one or more data elements which are indicative of a property of an audio object (106a) from the plurality of audio objects (106a) and/or of a downmix signal (112) derived from the plurality of audio objects (106a). The method (400) comprises identifying (401) a redundant data element which is common to the first and second sets (104, 114, 314) of metadata. Furthermore, the method comprises encoding (402) the redundant data element of the first set (114, 314) of metadata by referring to a redundant data element of a set (104) of metadata external for the first set (114, 314) of metadata.
US09955274B2
A vibration monitoring and analysis system may include a transducer configured to convert sensed vibration into an alternating current. A processing module may analyze the alternating current and produce an output configured to convey information regarding characteristics of the alternating current. One or more analysis modules may be utilized to compare a waveform of the sensed vibration to known patterns, for example to identify known events and/or conditions.
US09955273B2
A microphone assembly is disclosed. In an embodiment, the assembly includes a transducer and an electronic circuit operatively connected to the transducer, wherein the electronic circuit comprises a test mode circuitry configured to selectively set the microphone assembly in one or more test modes or an operational mode, and wherein the one or more test modes enable determining at least one parameter of the transducer.
US09955264B2
Systems and methods of alert and notification transmission are contemplated in which a transceiver provides an alert/notification to a user(s) wearing a headset that provides hearing protection device with an integrated transceiver (e.g., radio) and on-board siren-voice alert function board. Typically, this device would be used in a loud noise area (>+70 dB) that would otherwise prevent the user from hearing an alert and notification, such as a siren tone and/or Public Address announcement. While the alert and notification is silent, the device is contemplated to provide sufficient hearing protection (>+15 dB) from the ambient surroundings. It is also contemplated that it could play local music through an audio input port/other receiving method. When an alert and notification command is communicated to a headset device's address (or globally) through the transceiver, the device(s) would then proceed to play, within the headset, the desired alert and notification message. This would be successful, as the ambient sound is suppressed around the wearer and the message clearly listened too, live and/or pre-recorded. The alert could also be in the form of a visual indication (e.g. LEDs, etc.), vibration, etc. generated from this same function board. The transceiver could be an unlicensed frequency (e.g., Wi-Fi, FRS, etc.) or a licensed frequency (VHF, UHF, Digital 800 MHz, etc.), and while preferred to be bi-directional communications, it could also function in an alert only mode. Further, by adding a GPS locator, a facility and/or site could give proximity warnings based on user skill level in negotiation the facility, perhaps based on training level and experience. Also, digital messages are contemplated where text messages could be converted to speech.
US09955262B2
A driving device for a sound system by loudspeaker signals, wherein the sound system has a wave field synthesis loudspeaker array and one or several supply loudspeakers arranged separate from the wave field synthesis array includes an audio input for receiving at least one audio signal from at least one sound source, a position input for receiving information on a position of the sound source, a wave field synthesis unit for calculating loudspeaker signals for the loudspeakers of the wave field synthesis loudspeaker array, and a provider for providing the loudspeaker signal for the one or the several supply loudspeakers. The driving device enables a sound system by means of which sound localization becomes possible for the audience and at the same time pleasant levels can be achieved also in the first rows of the audience.
US09955240B1
A system and method are provided for facilitating remote communications with a vehicle using a wireless device. The method includes automatically receiving data from at least one vehicle control module, receiving a request from the wireless device to perform a task relating to the vehicle, determining a status of a vehicle function based on the data received from the at least one vehicle control module, determining whether the task is redundant based on the status of the vehicle function, and when the requested task is redundant, transmitting to the wireless device a response to the task request based on the data received from at least one vehicle control module; otherwise, transmitting a message to the vehicle to execute the task.
US09955235B2
Various aspects of a system related to communication of emergency alert messages are disclosed herein. The system comprises one or more circuits in an electronic device communicatively coupled to a broadcast server. The one or more circuits are configured to register one or more output preferences based on one or more input parameters provided by a user. An emergency alert message and associated metadata of an emergency event is received from the broadcast server. The associated metadata includes time-sensitive information of the emergency event. Based on the associated metadata and the registered one or more output preferences, the received emergency alert message is modified to a user-accessible format. According to the registered one or more output preferences, the modified emergency alert message is communicated to the user.
US09955224B2
Aspects of the subject disclosure may include, for example, identifying a predetermined comment of a number of predetermined comments that relate to a content item being presented by the media processor. A selection is identified of a characteristic of the content item of a number of predetermined characteristics of the content item. Posts are presented on a display device that is presenting the content item, wherein the posts are a subset of a group of posts related to the content item, and wherein the posts are selected based on the selection of the characteristic of the content item. Other embodiments are disclosed.
US09955217B2
A method of acquiring an Internet protocol (IP) address to control a standby mode of a set-top box, and the set-top box and a power management server performing the method are disclosed. The method may include determining whether a state of the set-top box changes from a broadcasting state in which a broadcasting service is provided to a passive standby state in which a network connection between the set-top box and a headend providing the broadcasting service is blocked, receiving state information associated with an IP address allocated to the set-top box for the network connection in response to the state of the set-top box changing to the passive standby state, and transmitting, to the set-top box, a state change command to maintain the network connection for the IP address allocated to the set-top box based on the received state information.
US09955213B2
An exemplary web services provider system remote from and communicatively coupled to a local digital video recording (“DVR”) system by way of a network detects an input command provided by a user and representative of a request for the local DVR system to perform a DVR operation with respect to a media program provided by a television service, identifies, in response to the request, a status of the media program, determines, based on the identified status of the media program, an optimal manner in which to perform the DVR operation, and directs the local DVR system to perform the DVR operation in accordance with the optimal manner. Corresponding systems and methods are also described.
US09955211B2
A commercial television-interfacing dongle and system and method for use of the same are disclosed. In one embodiment, a wireless transceiver is located within a housing, which also interconnectively includes a television input, television output, a processor, memory, a control interface, and a universal serial bus (USB) interface. The control interface and the USB interface connect to the commercial television. The commercial television interfacing dongle may establish a pairing with a proximate wireless-enabled interactive programmable device having a display and receive and process virtual remote control functionality input instructions from the proximate wireless-enabled interactive programmable device. Following receipt and processing of the virtual remote control functionality input instructions, the commercial television-interfacing dongle sends a command to the commercial television via a commercial television control protocol.
US09955210B2
A voice control system and method for a multimedia device are provided. The system includes an image sensing module configured to collect a user action image; an image recognizing module configured to determine a type or a status of a control instruction according to the user action image; a voice recognition status managing module configured to activate or wake up the voice recognition program according to a type of a current control instruction; a pickup module configured to collect voice signal; a voice recognizing module configured to recognize the collected voice data to generate a control instruction; and a multimedia function module configured to execute the control instruction to provide a corresponding multimedia function to the user. An image recognition technology, a voice recognition technology, and a storage medium of a computer are combined in the illustrated embodiment, a free and convenient voice control which is not depended on a hand-held remote control unit and not limited to a close pickup device is achieved. The interference of the sound output by the multimedia device, the environment background noise, and a non-control instruction voice signal of the user to the control instruction voice recognition can be effectively avoided, the instruction of the user can be precisely recognized.
US09955204B2
A system and method for distributing content through a set-top box. A number of wireless devices are registered for a communications session with the set-top box. Media content is communicated to one or more displays. Interactive content associated with the media content is retrieved for each of the number of wireless devices in response to receiving requests from each of the number of wireless devices. The interactive content is distributed to each of the number of wireless devices in response to retrieving the interactive content for each of the number of wireless devices.
US09955196B2
A video server receives an uploaded video and determines whether the video contains third-party content and which portions of the uploaded video match third-party content. The video server determines whether to degrade the matching portions and/or how (e.g., extent, type) to do so. The video server separates the matching portion from original portions in the uploaded video and generates a degraded version of the matching content by applying an effect such as compression, edge distortion, temporal distortion, noise addition, color distortion, or audio distortion. The video server combines the degraded portions with the original portions to output a degraded version of the uploaded video. The video server stores and/or distributes the degraded version of the uploaded video. The video server may offer the uploading user licensing terms with the content owner that the user may accept to reverse the degradation.
US09955192B2
A real-time content identification and tracking system enabling monitoring of television programming consumption specific to an individual television or other viewing device. Metrics collected may include data regarding viewing of specific broadcast media, commercial messages, interactive on-screen information or other programming, as well as locally cached, time-shifted programming. Information about media consumption by such specific television sets or other viewing means may be returned to a commercial client of the system through a trusted third-party intermediary service and, in certain embodiments, encoded tokens may be used to manage the display of certain events as well as to enable robust auditing of each involved party's contractual performance.
US09955182B2
An apparatus for reconstructing a current motion vector of a current block in a current frame by determining a predicted motion vector of the current motion vector, includes: a decoder to reconstruct a differential motion vector and a prediction candidate identification flag by decoding a bitstream; and a motion vector reconstructor to derive one or more motion vector prediction candidates to predict the current motion vector, set the predicted motion vector to a motion vector prediction candidate identified by the prediction candidate identification flag among the one or more motion vector prediction candidates, and reconstruct the current motion vector of the current block by adding the predicted motion vector to the differential motion vector.
US09955180B2
Provided is an apparatus for encoding a moving picture that determines a quantization step size of a previous coding block according to scan order as the quantization step size predictor of the current coding block when a quantization step size of a left coding block of a current coding block and a quantization step size of an above coding block of the current coding block are unavailable and determines an available motion vector encountered first when retrieving motion vectors in the order of motion vector of a first predetermined position and motion vector of a second predetermined position in a reference picture as a temporal motion vector candidate. Therefore, it is possible to reduce the amount of coding bits required to encode motion information and the quantization step size of the current prediction block.
US09955178B2
A video encoding method includes a step of encoding substreams which are rows of largest coding units (LCUs) in parallel with each other, and a step of transmitting a bit stream including the encoded substreams, where the number of the substreams may be the same as the number of entry points.
US09955173B2
Systems and methods are disclosed for constructing video image frames including transparency information. Certain embodiments provide for accessing a first frame of digital data associated with a pixel of an image representation, the frame comprising a set of transparency data bits, a set of red data bits, a set of green data bits, and a set of blue data bits. A second frame is constructed comprising a single transparency data bit, a reduced set of red data bits, the set of green data bits; and the set of blue data bits, wherein the second frame is provided to a destination device.
US09955170B2
When a temporally compressed video stream is decoded and subsequently re-encoded, quality is typically lost. The quality loss may be mitigated using information about how the source video stream was encoded during the re-encoding process. According to some aspects of the disclosure, this mitigation of quality loss can be facilitated by decoders that output such information and encoders that receive such information. These decoders and encoders may be separate devices. The functionality of these decoders and encoders may also be combined in a single device, such as a transcoding device. An example of the information that may be used during re-encoding is whether each portion of the original stream was intra-coded or non-intra-coded.
US09955168B2
A method is provided for encoding multiple video frames in parallel. The method includes the steps of generating an estimated starting fullness level of a VBV buffer before encoding begins, beginning parallel frame encoding, monitoring the number of bits produced for each parallel frame during encoding, tracking the number of unencoded CTUs within each parallel frame during encoding, continuously updating an actual fullness level of the VBV buffer relative to each parallel frame during encoding, and encoding in skip mode any remaining unencoded CTUs in a particular frame and any preceding frames when the difference between the actual fullness level for a frame and a minimum fullness level for the VBV Buffer equals the number of remaining unencoded CTUs in that particular frame.
US09955166B2
The present invention relates to a method for processing a video signal and a video decoder, wherein an offset parameter of a reference block is acquired, an offset parameter of a current block is acquired by using the offset parameter of the reference block, an adaptive parameter is applied to the current block by using the offset parameter of the current block, and the reference block is a block in a different view point from the current block. According to the present invention, an accurate adaptive parameter can be applied to the current block by using an offset parameter of a reference view point in consideration of a difference between view points when obtaining the offset parameter of the current block.
US09955164B2
The present disclosure relates to an image processing device and method that enable suppression of an increase in the amount of coding of a scaling list.An image processing device of the present disclosure sets a replacement difference coefficient that is a difference between a replacement coefficient and a coefficient located at the beginning of a quantization matrix whose size is limited to not greater than a transmission size that is a maximum size allowed in transmission, the replacement coefficient being used to replace a coefficient located at the beginning of an up-converted quantization matrix which is obtained by up-converting the quantization matrix to the same size as a block size that is a unit of processing in which dequantization is performed, quantizes an image to generate quantized data, and transmit encoded data obtained by encoding the generated quantized data, replacement coefficient data obtained by encoding the replacement coefficient, and replacement difference coefficient data obtained by encoding the set replacement difference coefficient. The present disclosure can be applied to an image processing device.
US09955161B2
Provided is an image processing apparatus including: area determination unit configured to determine whether or not an area of a control block functioning as control unit for filtering of an image includes a processing-target slice area of a plurality of slices formed in a frame of an encoded image; control information creation unit configured to create filter control information representing whether or not the filtering is performed for the area of the control block including a processing-target slice for each area of the control block including the processing-target slice when the area determination unit determines that the area of the control block includes the area of the processing-target slice; and filter unit configured to perform filtering for the image based on the filter control information created by the control information creation unit.
US09955159B2
In some aspects, methods and systems described herein provide for preparing component videos for combining into a bitstream. An example system may receive a source video. The system may also receive data representing a compression format. The system may encode a reference frame as an intra-coded picture that is sub-divided into intra-coded units. The system may encode the sequence of source frames as a sequence of predictive-coded pictures conforming to the compression format. The sequence may be divided into groups of pictures that include a first predictive-coded picture followed by one or more second predictive-coded pictures. The first predictive-coded picture may be sub-divided into intra-coded units that represent respective portions of a source frame by describing the pixels of the portion so as to simulate intra-coded pictures. The system may concatenate the sequence of predictive-coded pictures after the intra-coded picture so as to produce a bitstream.
US09955156B2
Intra prediction is used in state-of-the-art video coding standards such as AVC. The intra prediction modes are coded into the bitstream. Luma and chroma components could potentially have different prediction modes. For chroma components, there are 5 different modes defined in AVC: vertical, horizontal, DC, diagonal down right, and “same as luma”. Statistics show that the “same as luma” mode is frequent used, but in AVC, this mode is encoded using more bits than other modes during entropy coding, therefore the coding efficiency is decreased. Accordingly, a modified binarization/codeword assignment for chroma intra mode signaling is able to be utilized for high efficiency video coding (HEVC), the next generation video coding standard.
US09955154B2
Methods, systems, and computer program products for the generation of multiple layers of scaled encoded video data compatible with the HEVC standard. Residue from prediction processing may be transformed into coefficients in the frequency domain. The coefficients may then be sampled to create a layer of encoded data. The coefficients may be sampled in different ways to create multiple respective layers. The layers may then be multiplexed and sent to a decoder. There, one or more of the layers may be chosen. The choice of certain layer(s) may be dependent on the desired attributes of the resulting video. A certain level of video quality, frame rate, resolution, and/or bit depth may be desired, for example. The coefficients in the chosen layers may then be assembled to create a version of the residue to be used in video decoding.
US09955153B2
In one embodiment, a method for decoding a video bitstream having a plurality of pictures, the bitstream generated by a video coding system with sample adaptive offset (SAO), is provided, the method comprising the steps of: obtaining processed video data from a video bitstream; partitioning the processed video data into blocks, wherein each of the blocks is equal to or smaller than a picture and each block is comprised of a plurality of pixels; applying a first SAO compensation to each of the pixels in a processed video block; and applying a second SAO compensation to each of the pixels in the processed video block.
US09955146B2
A display device comprises a signal processor configured to generate left-eye and right-eye image data according to an input image signal, a frame rate controller configured to generate a plurality of left-eye and right-eye image data from the left-eye and right-eye image data according to an output frequency, a data formatter configured to alternately organize the plurality of left-eye and right-eye image data generated by the frame rate controller, and a display unit configured to sequentially display the plurality of left-eye and right-eye image data organized by the data formatter.
US09955143B2
An aspect provides a method of modifying a display including a plurality of pixels wherein each of the pixels is less than twice as tall as the pixel is wide includes modifying the display to create a plurality of modified pixels wherein each of the modified pixels is at least twice as tall as the modified pixel is wide, comprising at least one of a) masking of at least a portion of the display, b) optically shifting a perceived position of at least one row of sub-pixels of the display, and c) changing the addressing of sub-pixels of the display. Other aspects are described and claimed.
US09955141B2
A portable three-dimensional scanner includes at least two image sensing units and a depth map generation unit. When the portable three-dimensional scanner is moved around an object, a first image sensing unit and a second image sensing unit of the at least two image sensing units capture a plurality of first images comprising the object and a plurality of second images comprising the object, respectively. When the first image sensing unit captures each first image of the plurality of first images, a corresponding distance exists between the portable three-dimensional scanner and the object. The depth map generation unit generates a corresponding depth map according to the each first image and a corresponding second image. A plurality of depth maps generated by the depth map generation unit, the plurality of first images, and the plurality of second images are used for generating a color three-dimensional scan result corresponding to the object.
US09955133B2
In a first aspect, the present invention provides methods for creating video signals including (a) receiving an input video signal including an input red component, an input green component, and an input blue component; (b) determining (i) that a magnitude of the input red component is greater than a magnitude of the input green component and (ii) a differential between the magnitude of the input red component and the magnitude of the input green component; and (c) sending an output video signal including an output red component, an output green component, and an output blue component, where at least one of the following is true: (i) the output red component is decreased by a fractional amount relative to the input red component based on the differential; and/or (ii) the output green component is increased by a fractional amount relative to the input green component based on the differential, and the output blue component is increased by a fractional amount relative to the input blue component based on the differential.
US09955132B2
Dual and multi-modulator projector display systems and techniques are disclosed. In one embodiment, a projector display system comprises a light source; a controller, a first modulator, receiving light from the light source and rendering a halftone image of said the input image; a blurring optical system that blurs said halftone image with a Point Spread Function (PSF); and a second modulator receiving the blurred halftone image and rendering a pulse width modulated image which may be projected to form the desired screen image. Systems and techniques for forming a binary halftone image from input image, correcting for misalignment between the first and second modulators and calibrating the projector system—e.g. over time—for continuous image improvement are also disclosed.
US09955120B2
Implementations generally relate to virtual reality telepresence. In some implementations, a method includes positioning a first user in a virtual environment, and determining a first point of view associated with the first user. The method further includes positioning a second user in the virtual environment, and determining a second point of view associated with the second user. The method further includes projecting one or more of the first user and the second user in the virtual environment based on a first positioning of the first user and a second positioning of the second user and based on the first point of view and the second point of view.
US09955119B2
A multimedia conference broadcast system may include one or more processors and a memory. The one or more processors may receive video streams and audio streams from participant devices. The one or more processors may transmit, to each of the participant devices, the video streams and the audio streams corresponding to the other devices. The one or more processors may receive a request to broadcast the video streams and the audio streams from one of the participant devices. The one or more processors may generate a composite multimedia stream based on the video streams and the audio streams received from the participant devices. The one or more processors may broadcast the composite multimedia stream to viewer devices that are separate from the participant devices.
US09955118B2
An information processing apparatus for controlling establishment of communication between a plurality of communication terminals is disclosed. The information processing apparatus includes a communication establishing unit configured to cause, while communication via a first session is established between the plurality of communication terminals, the plurality of communication terminals to establish communication via a second session; and a communication starter configured to cause the plurality of communication terminals to start the communication via the second session upon confirming that the communication via the second session is established between the plurality of communication terminals.
US09955100B2
Provided are image sensors with non-local readout circuits that include a substrate and a plurality of pixels and operatively connected to a control unit, wherein the control unit has first and second biasing circuits for providing, respectively, substantially symmetrical first and second biasing voltages and including, respectively, first and second selection means to selectively bias the pixels; and a readout circuit for reading out the pixels; and in that each pixel includes a photo-active element that has a photosensitizing layer associated to a transport layer; a non-photo-active reference element; first and second contacts circuitally connected, respectively, to the first and second biasing circuits; and an output contact circuitally connected to the readout circuit; wherein the photo-active element is circuitally connected between the first and output contacts, and the reference element is circuitally connected between the output and second contacts. Also provided are optoelectronic systems that include the image sensor.
US09955099B2
A CMOS image sensor for a camera assembly is provided, having a sensor die with opposing faces, an upper face, and a lower face. On the upper face, the sensor die is provided with a sensor array, an analog-to-digital conversion module, a digital logic circuit, and a timing and clock control circuit. The sensor array is substantially centered on the sensor die. The analog-to-digital conversion module is split into two submodules. Each submodule is disposed adjacent to the sensor array and positioned on opposing sides of the sensor array. The digital logic circuit forms a first row. The timing and clock control circuit and the analog signal processing circuit are adjacent and form a second row. The first and second rows have similar dimensions and are disposed on opposite sides of the sensor array.
US09955097B2
A CMOS type semiconductor image sensor module wherein a pixel aperture ratio is improved, chip use efficiency is improved and furthermore, simultaneous shutter operation by all the pixels is made possible, and a method for manufacturing such semiconductor image sensor module are provided. The semiconductor image sensor module is provided by stacking a first semiconductor chip, which has an image sensor wherein a plurality of pixels composed of a photoelectric conversion element and a transistor are arranged, and a second semiconductor chip, which has an A/D converter array. Preferably, the semiconductor image sensor module is provided by stacking a third semiconductor chip having a memory element array. Furthermore, the semiconductor image sensor module is provided by stacking the first semiconductor chip having the image sensor and a fourth semiconductor chip having an analog nonvolatile memory array.
US09955088B2
A method and apparatus for inspecting a structure. Electromagnetic radiation is sent to a surface on a structure from an electromagnetic radiation emission system. A response is filtered to the electromagnetic radiation using a filter located inside of a borescope inspection housing. The filter is configured to pass a number of wavelengths in a response to the electromagnetic radiation directed at the surface on the structure. Data is generated from the number of wavelengths from the number of wavelengths passed through the filter using a sensor array. A two-dimensional image of the surface on the structure is generated with a group of graphical indicators indicating a group of inconsistencies not visible to a naked eye. The two-dimensional image is generated using data from a sensor array.
US09955086B2
Embodiments provide a lens moving apparatus including a housing supporting a magnet, a bobbin having an outer circumferential surface on which a first coil is disposed, the bobbin moving in the housing in a first direction, upper and lower elastic members each connected to both the housing and the bobbin, and a second coil disposed so as to be spaced apart from the first coil in the first direction, wherein the second coil generates induction voltage resulting from inductive interaction with the first coil when the bobbin moves in the first direction.
US09955084B1
According to some embodiments, a camera captures a plurality of images of substantially the same scene at different exposure levels for each video frame to be captured. These images are then merged or fused and processed using a spatially, and optionally also temporally, varying tonemapping operator, and the resulting image after some further finishing is written into a video stream. In some embodiments, this processing is performed in real time on a graphics processing unit present in the device containing the camera.
US09955083B2
Provided is an image processing apparatus including a generation section which generates, based on a plurality of images captured at different exposure times, index information representing an index of a brightness of the plurality of images, and a detection section which detects a moving photographic subject included in the plurality of images based on the index information.
US09955082B2
Methods and apparatus relating to image capture of image portions using optical chains with non-parallel optical axis are described. In some embodiments different portions of a scene area of interest captured by different optical chains operating in parallel are combined. The use of multiple optical chains in parallel facilitates generation of an image with a higher overall pixel count than would be possible using a single sensor of one of the optical chains and/or with more light capture than would be captured using a single one of the optical chains.
US09955079B2
Disclosed is a camera module. The camera module includes a lens barrel disposed in a housing to receive a lens; and a driving unit moving the lens barrel relative to the housing, wherein the driving unit comprises: a first driving unit in the lens barrel; and a second driving unit in the housing, and wherein the lens barrel comprises a central area on which the lens is disposed; and a peripheral area surrounding the central area, in which the first driving unit is disposed in the peripheral area. The camera module includes a lens barrel disposed in a housing to receive a lens; and a plurality of driving units moving the lens barrel relative to the housing, wherein a first direction is defined perpendicularly to an optical axis of the lens, a second direction is defined perpendicularly to the optical axis of the lens and the first direction, and the driving units including coils and moving the lens barrels in the same direction along the first direction or the second direction have coil winding directions corresponding to each other.
US09955077B2
A camera module includes first and second frames accommodated in housing, and a hand-shake correction unit. The hand-shake correction unit is provided on the first frame or the second frame and configured to generate a driving force in a direction perpendicular to an optical axis of a lens accommodated in the first and second frames. Sidewalls of the housing opposite to each other comprise different thicknesses.
US09955072B2
An imaging device for producing a high resolution image of a target with an imaging sensor and a method using the same is provided. The method is comprised of the steps of: determining, from the target size, resolution requirements of the image to be produced; capturing multiple individual low resolution images of the target, a minimum number of individual images captured being based upon the resolution requirements determined in the determining resolution requirements step; moving the OIS module to specific positions between the capturing of the individual low resolution images in the capturing multiple low resolution images step, the specific positions being based upon the resolution requirements in the determining resolution requirements step; and processing the multiple low resolution images to produce a high resolution image.
US09955062B2
A system, method and computer program product for communicating between a primary audio video device and other audio video devices comprising: detecting orientation and position of the primary audio video device; detecting a distance between the primary audio video device and a primary subject in focus on the primary audio video device; locating other networkable audio video devices for communication; receiving subject data for a real time video of a subject from one or more of the located networkable audio video devices; determining from subject data which networkable audio video devices are near the primary subject; determining one or more primary subject audio video devices for use in recording audio for a video; and synchronizing determined one or more primary subject audio video devices for recording audio when one or more of the audio video devices is recording video of the primary subject.
US09955061B2
Methods, computer program products, and systems are presented and can include for instance: determining a location of interest; and obtaining image data from one or more camera device about the location of interest.
US09955054B2
A method for assembling a camera includes providing a circuit board with a first surface defining a plane and an aperture extending entirely through the circuit board. An image sensor is fixed on the first surface. A lens holder is provided with a lens barrel defining a central axis and supporting a lens in a fixed position relative to the lens barrel. A post extends outward from the lens barrel in a first direction. The circuit board and the lens holder are oriented such that the plane defined by a first surface of the circuit board is perpendicular to the central axis. The circuit board and the lens holder are axially joined so that the post is received by the aperture. A final alignment of the image sensor relative to the central axis and the lens is non-adjustably fixed upon sliding the post through the aperture.
US09955052B2
A device having a camera unit for recording images of the exterior of a motor vehicle, includes a support assembly accommodating the camera unit which is movable between a standby position and an active position, a cover element and a movement mechanism. The movement mechanism includes a first pivot element, which is pivotably supported on the support assembly such that it can pivot about a first rotational axle, and which is connected to a first articulation axle of the camera unit in an articulated manner, a second pivot element, which is pivotably supported on the support assembly, such that it can pivot about a second rotational axle, and which is connected to a second articulation axle of the camera unit, and a third pivot element, which is pivotably supported on the support assembly such that it can pivot about the first rotational axle, and which is connected to the cover element.
US09955038B2
An image processing apparatus includes a layer separating unit configured to separate an input frame image data item into a moving subject layer and a background layer and a combining processing unit configured to generate a combined image data item by performing an image combining process using the input frame image data item. In the image combining process, top priority is given to a moving subject layer of the latest input frame image data item, a second priority is given to a moving subject layer of a frame image data item associated with a previously performed combining process, and a layer-image combining process is performed for a partial area of an existing combined image data item.
US09955035B2
Provided is a pull printing system that is capable of improving security performance over that of a typical system. When authentication based on identification information and authentication information of a person providing a transmission instruction from a user terminal is successful, a pull printing server of the pull printing system correlates a printing job from the user terminal with identification information of a person providing an execution instruction from the user terminal, and spools the printing job. When authentication based on identification information and authentication information of a person providing the execution instruction from an MFP is successful, the pull printing server sets the printing job that is related with the identification information of the person providing the execution instruction as a target candidate of pull printing when spooling the printing job that is related with the identification information of the person providing the execution instruction.
US09955034B2
A wireless communication apparatus includes a memory device storing data associated with a storage device that is external to the wireless communication apparatus, an image capturing device, a display, and a controller. The controller is configured to identify an external storage device corresponding to a code captured by the image capturing device, generate display data from the data stored in the memory device if the data stored in the memory device are associated with the identified external storage device, and control the display to generate a display image from the display data.
US09955028B2
According to the present disclosure, an image-processing apparatus acquires scan information of the read images read by the image-reading apparatus, generates temporal change data based on the statistical information and the scan information, determines whether the temporal change data satisfy a threshold, and outputs notice information when the temporal change data are determined as failing to satisfy the threshold.
US09955026B2
The disclosure is related a method for providing, by a server, a sharing service that enables a plurality of user equipments to share at least one of digital assets. The method may include generating a sharing group for virtually linking a first user equipment with a second user equipment in response to a grouping request message from the first user equipment, creating a virtual data sharing storage in association with the generated sharing group in order to virtually store a predetermined amount of sharing data allowance, in response to a data depositing message from the first user equipment, depositing a first amount of data allowance into the virtual data sharing storage for sharing the first amount of data allowance belonging to the first user equipment with the second user equipment virtually linked to the first user equipment as the same sharing group, and in response to a data withdrawing message from the second user equipment, withdrawing a second amount of data allowance from the sharing data allowance stored in the virtual data sharing storage for using the second amount of the sharing data allowance by the second user equipment.
US09955024B2
A subscriber communicates over an IP-based wireless telecommunications network through an access point. Identifiers associated with the access point (e.g., MAC address IP address, FQDN . . . ) are stored in a database. Each access point is mapped into one or more service zones, where service zones are mapped to service types. The subscriber has a rate plan that is based on a selection of one or more service types. When a wireless connection between the subscriber and the IP-based wireless telecommunications network is established, the access point identifiers are used to retrieve a service zone ID from the database. Upon completion of the communication, a call detail record can be generated that includes the service zone ID for the communication. The billing system can then retrieve billing plan information to determine an appropriate rate for the subscriber based on the service zone ID.
US09955021B1
Processing of VoIP calls routed by an IPBX server are disclosed. At least one processing circuit is communicatively coupled to an Internet-Protocol Private Branch Exchange (IPBX) server that is configured and arranged to route Voice over Internet Protocol (VoIP) calls for a plurality of agents in a call center. The processing circuit is configured to receive call event messages from the IPBX server for calls routed by the IPBX server, generate, during a call to a first agent of the plurality of agents, a set of data metrics including call summary metrics based on the call event messages; and redirect, during the call to the first agent, the call to a second agent of the plurality of agents in response to the set of data metrics satisfying a set of criteria indicated in a policy.
US09955009B2
Methods and systems determining customer satisfaction in a work environment via prescriptive analytics. Self-reported data related to the perception of an agent with respect to customer satisfaction in a work environment (e.g., a call center) can be collected via an interface (e.g., an agent dashboard) that allows the agent to enter the self-reported data regarding the customer satisfaction. The self-reported data can then be correlated with an actual customer satisfaction score associated with the agent to derive data indicative of an interaction between the agent and a customer(s). Feedback data can then be provided via the interface indicating a correctness of the self-reported data based on correlating the self-reported data with the actual customer satisfaction score.
US09955005B2
Suppression of Announcements in Communication Networks. The present invention relates to communication networks and, more particularly, to announcements in communication networks. System and method for suppression of announcement made to a user in a communication network. A user requests to start a communication session with a second user in the network. A suppression of announcement indicator is added in Connect operation while the communication session is being established with the second user and the announcement is suppressed from being played to the user if the second user is unable to answer the request. The users may be IMS users and/or PSTN users belonging to the same network or different networks.
US09955003B2
A contact information system provides an independent network authority for providing contact information in connection with incoming calls or messages. The contact information system utilizes a database of communication identifiers to provide contact information for end user devices that receive incoming communications which specify communication identifiers that are stored in the database.
US09955001B2
In an example, a mobile device is configured to automatically lock when a detector, such as a GPS receiver, determines that the device is in motion above a certain speed threshold, such as 10 mph. Additional detectors may be used to determine whether the device is operated by the user or by a passenger, so that intelligent decisions can be made about whether to lock the device. During the lock, certain selected apps such as a GPS navigation system or music player may be enabled, with limited controls as appropriate. In some cases, hands-free operations may be available. The mobile device may also be configured to provide an automated response to incoming calls and messages.
US09955000B2
A method comprising determining that a current time is within a pre-notification possession time period associated with an apparatus possession alarm, the apparatus possession alarm being associated with an apparatus, and the pre-notification possession time period being a duration of time prior to a notification time associated with the apparatus possession alarm, receiving motion information indicative of movement of the apparatus, and precluding causation of rendering of a notification at the notification time based, at least in part, on the receipt of the motion information is disclosed.
US09954993B2
An apparatus for communicating with a handheld device (e.g., a cellular telephone) is provided herein. A protective shroud is configured to enclose the handheld device and protect it against incidents that commonly cause damage to handheld devices. Integral to the protective shroud is at least one of an input component configured to receive user input and a wireless transceiver configured to transmit signals to and/or receive signals from the handheld device. In one example, where both the input component and the wireless transceiver are integral to the protective shroud, signals related to received user input (e.g., where the shroud serves as a keypad) may be transmitted to the handheld device even if the protective shroud is removed from the handheld device.
US09954992B2
An unmanned aerial vehicle (UAV) equipped with sensor modules and mobile devices (including smartphone, tablet) running intelligent software for autonomous navigation, onboard computer vision, communication, and robotic social networks, is disclosed herein.
US09954988B2
A method of controlling an audio-video-navigation (AVN) system includes: establishing a phone book access profile (PBAP) with a terminal using a communication unit of the AVN system; requesting, using the PBAP, that the terminal transmit a phone book size indicating an amount of phone book information included in a first partial list among a plurality of phone book lists stored in the terminal; selecting an action to perform based on the phone book size, the action selected from a group consisting of: requesting that the terminal transmit all of the plurality of phone book lists, displaying a previously stored phone book list, and deleting the previously stored phone book list; and performing the selected action.
US09954987B2
Provided is a console unit for controlling a mobile device. The console unit includes a remote control unit and a tower section. The tower section includes a receptacle adapted for receiving the remote control unit at least partially therein. The tower section further includes a housing and an interface configured for coupling to the mobile device. The interface is configured for selectively receiving high definition media data and USB protocol data from the mobile device and for charging the mobile device. The tower section includes at least one media port for providing the high definition media data to a media player device and a power port for receiving power. The remote control unit includes a communications transceiver configured to communicate with the mobile device. The remote control unit includes a touchpad for receiving input from a user, including gestures, while the mobile device is coupled to the tower section.
US09954981B2
A method for processing signaling data included in at least one protocol layer in an internet protocol (IP)-based digital broadcast transmitter, according to an embodiment of the present invention, comprises the steps of: copying signaling data included in a packet of a layer (N+M) according to a protocol of the layer (N+M); inserting the copied signaling data, a length field for identifying the length of the copied signaling data, and a signaling indicator indicative of the existence of the copied signaling data into the end of a payload of the packet of the layer (N+M), thereby generating the packet of the layer (N+M); generating a packet of a layer (N+L) including a header of the layer (N+L) and the packet of the layer (N+M) according to a protocol of the layer (N+L); generating a packet of a layer (N) including a header of the layer (N) and the packet of the layer (N+L) according to a protocol of the layer (N), wherein the header of the layer (N) includes an indicator field for identifying that the signaling indicator is included in the packet of the layer (N); and processing the packet of the layer (N) according to a protocol of a physical layer, thereby generating a broadcast signal.
US09954980B2
There is provided a method for authenticating an attempt at establishment of a network connection by allowed code, comprising: providing a dataset having previously observed stack trace templates each representing a stack trace pattern prevailing in stack traces recorded by monitoring stacks of clients executing an allowed code during a connection establishment process for establishing network connections related to the allowed code; receiving a new stack trace recorded during a new connection establishment process for a new network connection by a new client; measuring a similarity between the new stack trace and the plurality of stack trace templates to identify a match to a stack trace template; evaluating the matched stack trace template for a predefined rule requirement; and updating a rule-set database with the matched stack trace template to authenticate new network connection establishments associated with stack templates matching the matched stack trace template.
US09954976B2
An electronic device for collecting and displaying measurement data includes a data interface, a processor and a transport interface. The data interface obtains measurement data. The processor is configured to generate portable graphical user interface (GUI) information indicating a visual format corresponding to at least one of the measurement data or the electronic device, and to associate the portable GUI information with the measurement data. The transport interface is configured to deliver the measurement data and the associated portable GUI information to a remote display, enabling the remote display to display the measurement data in accordance with the visual format indicated by the portable GUI information.
US09954975B2
A first wireless end-user device is designated as subject to controls under a device group authorization from a master wireless end-user device. The first device receives a protection management profile from the master device, and compares settings in the profile to a device location change state (e.g., speed) and a device user I/O method state (e.g., touchscreen, hands-free, Bluetooth, voice-activated, etc.). According to the profile, at certain speeds and I/O methods, one or more device service and/or network activities are limited. The master device may send multiple such profiles to the first device, any of which if applicable can limit different service and/or network activities in different situations.
US09954970B1
A web server monitors and receives measurements as to how long a client device takes to load or display individual items after a user first requests a web page containing the items. The measurements may be based on a duration that begins at a time between a user's navigation request and network browser's transmission of a request for a new web page. The recorded measurements received by the web server may include measurements relating to the latency experienced by the user in loading a particular item of content for a web page, such as an image, or may include the latency experienced by the user in loading an entire web page. One or more components used by the network browser, such as a network browser plug-in and or scripting language embedded in a web page, may provide one or more routines for measuring and reporting the latencies experienced by the user.
US09954963B2
Among other disclosures, a method may include identifying content in an electronic communication, the content including a link. The method may include characterizing content associated with the link and storing the characterization. Upon detecting a match of a characterization, presenting one or more of the communication or portion thereof, the link or content associated with the link.
US09954960B2
A system and method to estimate a location relating to a user who has not filled in information about the location in a profile field in social media such as a microblog. The system and method estimates association between a user in social media and a location includes the steps of acquiring a first content posted to the social media by a first user associated with a first location, determines regional localization of the first content on the basis of the first location, acquires a second content posted to the social media by a second user not associated with a location, determine the degree of a relationship between the first content and the second content, and associating the first location with the second user on the basis of the localization and the degree of the relationship.
US09954958B2
Various examples are directed to systems and methods for executing a computing job at a computing node of a distributed computing system. A node controller may receive computing job request data from a system controller. The node controller may send job start data to a shared resource provider. The shared resource provider may mount a shared resource for the computing job indicated by the computing job request data. The node controller may send a heartbeat message to the system controller and receive from the system controller an acknowledgement message referencing the heartbeat message. The system controller may send to the shared resource provider, a job stop command. In response to the job stop command, the shared resource provider may dismount the shared resource.
US09954950B2
Solutions for controlling data exposure among computing entities are described. A data transfer agent (DTA) module includes a data payload portion to store information content conditionally transferable to at least one other DTA module, and a code portion containing instructions that operationally implement: a DTA connectivity link to the at least one other DTA module; an attestation module to obtain, via the DTA connectivity link, attestation from each of the at least one other DTA module indicating a data output connectivity configuration of that other DTA module; and a decision module to determine a degree of permissible interaction with each of the at least one other DTA module based the attestation and on decision criteria.
US09954948B2
The description relates to personal content distribution networks. One example can identify devices that are associated with a set of users and that are proximate to a location and obtain operational information about the devices. The example can establish a PCDN for the devices at the location. The PCDN can be configured to obscure identification of the devices to entities outside the PCDN and to aggregate content that may be requested by individual users among multiple individual devices.
US09954939B2
A message server includes a query store for storing query requests, value data for the query requests, and response time data for the query requests. A message is received, a query request is determined from the message and sent to a query server. A timeout period is determined from response time data stored in the query store. If no response to the query request is received within the timeout period, a value is determined from the value data for the query request stored in the query store. Alternatively, if a response to the query request is received within the timeout period, a value is determined from the response, value data for the value is stored in the query store, and response time data is stored in the query store. An action in response to the message is determined and the action is performed.
US09954934B2
A system and method for management and processing of resource requests are provided. A content delivery network service provider receives a DNS query from a client computing device corresponding to a requested resource from the client computing device. The content delivery network service provider associates the requested content into a set of content segments. For each content segment, the content delivery network service provider identifies the network address of a registered content provider, such as peer computing device, and a cache component of the content delivery service provider. The content delivery network service provider also provides tokens for requesting the content from a registered content provider. The client computing device obtains the content from the registered content providers and/or the cache component of the content delivery network service provider. Thereafter, the content delivery network service provider reconciles with the registered content providers for content provided to client computing devices.
US09954932B2
Embodiments relate to methods (900) and apparatuses (800) transferring a first event detector process of a first node (704-1) of a distributed computing system (300; 700) to a second event detector process of a second node (704-2) of the distributed computing system (300; 700), the second node (704-2) being different from the first node (704-1). The apparatus (800) comprises means (802) for copying a process content of the first event detector process to the second event detector process, means (804) for coordinating input events of the first event detector process such that the input events of the first event detector process are processed in parallel at both the first and the second event detector processes, and means (806) for verifying whether the input events of the first event detector process, which are processed in parallel at both the first and the second event detector process, lead to identical output events at both the first and the second event detector processes.
US09954929B2
Techniques are disclosed for promoting and sharing social content for view in a network. An index engine of a network device queries a client device requesting a data connection to the network device for sharable social media content. The index engine receives, in response to the query, the social media content from the client device. The network device indexes the social media content in a data store of the network device. The indexed social media content is transmittable to requesting client devices connected to the network device.
US09954926B2
Provided is a quality-of-service (QoS)-guaranteed video stream method. The QoS-guaranteed video stream method includes transmitting, by a transmitting server, a video stream including different video stream data for a plurality of respective layers, to a relay server, receiving, by the transmitting server, first section network state information which is information about a network state between the relay server and the transmitting server, from the relay server, receiving, by the transmitting server, second section network state information which is information about a network state between the plurality of respective user terminals and the transmitting server, and adjusting, by the transmitting server, qualities of video streams which are transmitted to the plurality of respective user terminals through the relay server by using network state information of the first section and network state information of the second section.
US09954921B2
Disclosed is a rate-adaptive data stream management system (DSMS) which is a precedence task, which has a descendent task, and a plurality of data channels and a plurality of feedback channels, the system including: a feedback analyzer which analyzes a control command transmitted from the descendent task; and a data channel selector which controls transmission of a data stream through the data channel with the descendent task based on the analysis result.
US09954919B1
To provide the continuous playback of content, a content server may provide code to a requesting device that causes the requesting device to play streaming content delivered in chunks or other portions without disruption in playback. The requesting device may execute the code by a browser or other application, which may cause the requesting device to determine whether a data buffer is empty or nearly empty and request additional content from a streaming server if the data buffer is empty or nearly empty. The process may be repeated a number of times each second for the duration of the playback of the content in order to enable continuous playback of the content regardless of any throttling of the code execution or content playback attempted to be imposed by a browser or other application.
US09954918B1
Systems and methods are provided for a computer-implemented method of implementing an on-demand computing network environment. A network specification is received from a user. Resources from one or more resource providers are provisioned including an audio server resource. The on-demand computing network is configured, where configuring includes assigning a first provisioned resource as a hub device. One or more second provisioned resources are assigned as rim devices, where rim devices are configured to communicate with one another only via the hub device. One rim device is a proxy server to which the user connects using a device having an address, where the audio server transmits audio data to the user via the proxy server without knowledge of the address of the user device.
US09954913B2
Methods, systems, and techniques for federating operations, in an optimized way using wide area networks are provided. Example systems provide an API for generating and handling federated requests as an aggregation. In one example Wide Area Network Aggregation System, WANAS provides an API, a connection manager, and connection iterators to manage inter-site connections and requests, and inter-pod requests and messaging. These components cooperate to distribute a task across multiple physically disparate sites using a representative connection to the site and fan out of requests to other pods within the site.
US09954912B2
A communication terminal is controlled such that the communication terminal does not transmit content data from the communication terminal to one or more communication terminals through a first session, but transmits content data from the communication terminal to a selected communication terminal of the one or more communication terminals through a second session after the second session is established with the selected communication terminal.
US09954906B2
Aspects of the subject disclosure may include, for example, a method, including receiving from media gateway devices session information that determines communicative couplings between media gateway devices and wireless communication nodes, and detecting a failure of a first media gateway device that provides for transmission of media streams to a first group of wireless communication nodes over a multicast-broadcast single frequency network. The method includes accessing, from the session information, first session information of the first media gateway device, initiating second communicative couplings to the first group of communicative nodes according to the first session information, receiving a unicast stream from a content server that is identified according to the first session information, generating a second multicast stream from the unicast stream, and, in turn, transmitting the second multicast stream over the multicast-broadcast single frequency network to the first group of wireless communication nodes. Other embodiments are disclosed.
US09954905B2
Disclosed is a system and method for enabling a caller to specify call coverage and bridging treatment preferences and or directives. The treatment may be specified by using SIP header parameters of an INVITE request associated with the call. The treatment may also be specified by an enterprise communication system, or equivalent, by engaging an Interactive Voice Response (IVR) system to collect a caller's coverage preferences.
US09954901B2
A learning-based computer network security system may include a service delivery controller executing on one or more of hardware processors that receives requests for transmitting network flows to one or more destination machines via a communication network. The service delivery controller may group the network flows into one or more similarity groups, and direct the network flows in a particular similarity group to a learning-based security appliance instance designated for the particular similarity group. Based on receiving feedback from the security appliance instance, the service delivery controller may regroup the similarity groups, and/or redirect the network flows, and/or redistribute the training results between the appliances, and/or modify assignment of appliances to similarity groups.
US09954896B2
Systems and methods of managing the security of a networked environment by deploying virtual appliances and using a central monitoring console to manage the feedback from these virtual appliances and view it alongside other activity on the network environment. In one embodiment a system is provided that includes a control module; and one or more virtual appliances each configured to, upon deployment in the network, automatically communicably link to the control module and report state information about the virtual appliance.
US09954888B2
Systems, methods, and software described herein provide enhancements for implementing security actions in a computing environment. In one example, a method of operating an advisement system to provide actions in a computing environment includes identifying a security incident in the computing environment, identifying a criticality rating for the asset, and obtaining enrichment information for the security incident from one or more internal or external sources. The method also provides identifying a severity rating for the security incident based on the enrichment information, and determining one or more security actions based on the enrichment information. The method further includes identifying effects of the one or more security actions on operations of the computing environment based on the criticality rating and the severity rating, and identifying a subset of the one or more security actions to respond to the security incident based on the effects.
US09954879B1
Systems and methods include: receiving digital event type data that define attributes of a digital event type; receiving digital fraud policy that defines a plurality of digital processing protocols; transmitting via a network the digital event data and the digital fraud policy to a remote digital fraud mitigation platform; using the digital event data to configure a first computing node comprising an events data application program interface or an events data computing server to detect digital events that classify as the digital event type; using digital fraud policy to configure a second computing node comprising a decisioning API or a decisioning computing server to automatically evaluate and automatically select one digital event processing outcome of a plurality of digital event processing outcomes that indicates a disposal of the digital events classified as the digital event type; and implementing a digital threat mitigation application process flow that evaluates digital event data.
US09954869B1
Provided is authentication and authorization without the use of supplicants. Authentication and authorization includes generating a profile for a device based on at least one characteristic observed during a successful attempt by the device to access an 802.1X network infrastructure. Expected characteristics for a next attempt to access the infrastructure by the device are determined. A characteristic of the next access attempt is matched to the expected characteristic and access to the network is selectively controlled as a result of the matching. This is achieved without a supplicant being installed on the device.
US09954868B2
The system includes a host, a network including a security gateway, and a public application. Established are an access session between the network and the host and an application session between the public application and the network. An application session record is created for the application session, and includes the user's public user identity used to access the public application, the user's private user identity used to access the network, a host identity, and an application session time. To determine the private user identity for the application session, the security gateway sends a query with the host identity and the application session time. These are compared with the host identity and access session time in an access session record, if they match, then the private user identity in the access session record is returned, and it is stored as the private user identity in the application session record.
US09954863B2
A computing system record security architecture comprises, in one example, a record generation component configured to receive a record generation request that includes a set of attributes and to generate a record in a computing system based on the record generation request, wherein the record includes the set of attributes and an owner property that identifies a first user as an owner of the record. The architecture comprises a record security component configured to receive a record modification request that requests a modification to the record, to analyze an identifier in the record modification request that identifies a second user as a sender of the record modification request, and to process the record modification request based on an analysis of the identifier in the record modification request relative to the owner property of the record.
US09954859B2
A computer device includes means for receiving a request for at least one random number; means for generating a message authentication code from the identifier and at least one random number to be transmitted; and means for creating a message for transmission, including the random number in plain text and the message authentication code. A random number distribution system includes the computer device; a communication network; and a receiver device connectable to the computer device via the network to transmit requests for random numbers to the computer device and to receive messages from the computer device.
US09954856B2
A one-time password (OTP) based security scheme is described, where a provider pre-generates a number of verification codes (e.g., OTP codes) which will be valid for a predetermined interval. The provider then encodes the verification codes (e.g., by hashing each code with a time value), and stores the verification codes into a data structure. The data structure can be provided to a verification system that can use the set of pre-generated OTP codes to authenticate requests received from users having personal security tokens.
US09954850B2
Disclosed are a service locking method, apparatuses and systems thereof. The method includes: receiving a locking request including identification information of a designated service and an identifier of an operating terminal, the designated service being a service of performing a sensitive operation to network virtual property; and sending an authentication request containing the identification information of the designated service and the identifier of the operating terminal to an authentication server, and locking the designated service upon receiving successful authentication information from the authentication server. By locking the designated service in the operating terminal after the authentication server authenticates the operating terminal successfully, the problem that the network virtual property of a legal user is likely to undergo an unauthorized operation is solved; a designated service, once locked, may not be directly operated by any operating terminal, thereby preventing unauthorized operations on the designated service.
US09954843B2
Described herein are various aspects pertaining to a web ticket that is used in connection with authenticating a user. The web ticket is generated through use of a symmetric key, and is less than two hundred bytes in size. A ticket issuer executing on a first computing device generates the web ticket responsive to receiving authentication data from a client computing device, and transmits the web ticket to such client computing device. The client computing device includes the web ticket in requests for data transmitted to a second server computing device that is in communication with the ticket issuer. The second server computing device includes a validator that validates the web ticket using the symmetric key, which is shared between the first server and the second server.
US09954842B2
The present disclosure introduces a method, a client, a server and a system of login verification. When a user logins, the client obtains a login request from the user for logging into an under-protected account system, where the login request includes at least an account to be logged in, determines property information of a current related account system corresponding to the account to be logged in from property information stored in a current login host, generates login verification information including at least the property information of the current related account system, and sends the login verification information to a server. The server verifies a login activity of the user based on the pre-stored reliable property information corresponding to the account to be logged in. Thus, the login verification process is simplified and the efficiency of login verification using the server is enhanced.
US09954839B2
There is described a system for authenticating a client device in a network having a plurality of IDM components. One or more of the IDM components subscribes (using the publish-subscribe message pattern) to authentication requests published by client devices. The client device publishes an authentication request into the network. The most appropriate IDM component to process the published authentication request is selected, and the authentication request forwarded to the selected IDM component. The selected IDM component is then operated to negotiate with and authenticate the client device.
US09954835B2
Methods and systems for facilitating exchanges of keys between individuals across multiple locations are provided. Each key set is assigned a unique key identifier. The key identifier is encoded on a key chain attached to the key set. A key set is picked up or dropped off at a key exchange center and is scanned to read the key identifier. The key identifier is relayed to a key exchange server which tracks key locations. The key exchange server verifies that an individual is authorized to pick up a key set and provides instructions to a device at the key exchange center to enable access to the key set. The key exchange server coordinates drop-off of a key set by updating the key location associated with the key identifier at drop-off and providing instructions to a device at the key exchange center for storage of the key set.
US09954834B2
A computing device has a first application and a second application. The first application generates a data access application key for use by the second application to enable decryption of data that is stored in encrypted form on the computing device using the data access application key. In operation, the second application generates a public/private key pair. The second application sends a request to the first application for the first application to send the second application a data access application key, the request including the public key. The first application derives the requested data access application key as a function of at least the public key. The first application sends the derived data access application key to the second application.
US09954830B2
Systems and methods for decryption of payloads are disclosed herein. In various embodiments, systems and methods herein are configured for decrypting thousands of transactions per second. Further, in particular embodiments, the systems and methods herein are scalable, such that many thousands of transactions can be processed per second upon replicating particular architectural components.
US09954828B1
A system for protecting data stored in the cloud includes a computing device that generates a plaintext encryption key and encrypts the plaintext encryption key using a credential of a customer that uses a cloud application. The computing device encrypts plaintext data using the encryption key and forwards the encrypted data to a cloud computer system that hosts the cloud application. The plaintext data can be received from a cloud application client that runs in the computing device or from another computing device that hosts the cloud application client. The encrypted encryption key can be stored in and retrieved from a key server.
US09954817B2
A method of re-dispatching packets at a packet forwarding element that includes a hardware dispatch unit and a multi-core processor. The method, at a first core of the multi-core processor, receives a packet of a particular packet flow from the hardware dispatch unit. The packet is dispatched from the hardware dispatch unit to the first core based on hardware implemented hashing algorithm. The first core identifies the plurality of header fields of the packet that uniquely identifies the particular packet flow. The first core performs a software implemented hashing algorithm on the identified plurality of header fields of the packet to calculate a hash value. The first core re-dispatches the packet from the first core to a second core of the multi-core processor based on the calculated hash value.
US09954810B2
One or more techniques and/or systems are provided for defining a message behavior profile for a sender, which may be used to categorize messages from the sender. A message behavior profile may be defined based upon, for example, message distribution behavior of the sender (e.g., volume, frequency, variance in content amongst messages sent to recipients, etc.); recipient interactions with messages from the sender (e.g., message read rates, message response rates, etc.); unsubscription options comprised within messages from the sender; and/or other factors. In this way, the message behavior profile and/or features extracted from a message may be used to categorize a message from the sender (e.g., newsletter, commercial advertisements, alert, social network etc.). Categorized messages may be organized into folders, displayed or hidden within views, and/or processed based upon their respective categorizations.
US09954808B2
Collecting online group chat messages. The method may include receiving a message associated with an online group chat session between chat participants. The method may also include determining the received message satisfies at least one message collection rule. The method may further include recording the received message to at least one message table based on each chat participant mentioned in the received message. The method may also include determining a first chat participant chooses to open a private chat session with at least one second chat participant. The method may further include identifying recorded messages within the message tables associated with the at least one second chat participant. The method may also include displaying the identified recorded messages in a private chat session sub-window.
US09954796B2
A method is disclosed for detecting packet at a receiving system in a Multi-Carrier Modulation (MCM) system. The method starts with receiving a signal at the receiving system. Then during the plurality of symbol durations, a set of phases of the signal for each symbol duration is obtained, where each phase is a phase of a carrier of the number of carriers. Then a set of phase variances for each carrier of the number of carriers is obtained, where each phase variance is a difference of phases of a carrier in different symbol durations. Then a phase variance value based on the set of phase variances is computed and it is compared with a threshold to determine whether a packet has been detected from the received signal.
US09954788B2
Some embodiments provide a method for estimating bandwidth estimate based on a set of statistical measurements that quantifies bandwidth variation. The method receives a piece of media content at a receiving device and computes several instantaneous bandwidth measurements based on sample data blocks or media content received at the receiving device. The method computes the set of statistical measures that quantifies variation between the computed instantaneous bandwidth measurements. Based on the set of statistical measures, the method computes a revised bandwidth estimate for receiving media content at the receiving device. In some embodiments, the method uses the revised bandwidth estimate to determine an amount of media content data to buffer in order to provide an uninterrupted playback.
US09954783B1
A network apparatus for providing native load balancing within a switch, including: a first network interface operable to communicatively couple to a first network; a plurality of second network interfaces operable to communicatively couple to a second network; one or more logic elements providing a switching engine operable for providing network switching or routing; and one or more logic elements providing a load balancing engine operable for: load balancing network traffic among a plurality of service nodes; probing a first service node; determining that the first service node is unavailable; and reassigning the buckets associated with the first service node to a next available service node.
US09954781B2
Embodiments relate to controlling workload flow on converged Ethernet links. An aspect includes coupling, by a processing device, a first control loop to a second control loop. The second control loop monitors the operation of the first control loop. An equilibrium set point is initialized for the second control loop prior to commencing operation of the first control loop. Accordingly, the equilibrium set point value is adjusted in the second control loop continuously based on a rate of operation of the first control loop.
US09954774B2
In one embodiment, a service function classifier device determines a classification of a packet using one or more packet classification rules. The device selects a service function path based on the classification of the packet. The device determines one or more traffic flow characteristics based on the classification of the packet. The device generates a service function chaining (SFC) header that identifies the selected service function path and the determined one or more traffic flow characteristics. The SFC header is configured to cause a device along the service function path to forward the encapsulated packet based on the identified service function path and the determined one or more traffic flow characteristics. The device sends the packet along the selected service function path as an encapsulated packet that includes the generated SFC header.
US09954772B2
Various techniques for source imposition of network routes are disclosed herein. In one embodiment, a method includes receiving label values at a source host from a label server. The individual label values corresponding to a network route to one of the hosts or network nodes in the computing network. The method also includes constructing a label stack to reach a destination virtual machine on a destination computing device in the computing network based on the received label values corresponding to the destination computing device and a location of the source computing device in the computing network. The method also includes imposing the constructed label stack on a packet destined to the destination virtual machine on the destination computing device.
US09954760B2
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.
US09954757B2
Contention for shared resources in a shared resource environment may be determined based on measurements from a probe running in the shared resource environment. The measurements can be compared to benchmarks, and a contention value may be determined based on the comparison.
US09954755B2
A maintenance method for network connection and a computer system are provided. The method is adapted to a computer system having a real-time clock. The real-time clock is configured to regularly wake up the computer system to check whether a network connection is working normally. In the method, a wake up operation to wake up the computer system is received from a user. It is determined whether a connection time of maintaining the network connection so far from a last time of entering a power saving mode is greater than a counting time for the real-time clock to wake up the computer system. It is tested whether the network connection is working normally when the connection time is greater than the counting time. The counting time of the real-time clock is updated to the connection time when the network connection is working normally.
US09954746B2
A computer system automatically generates service documentation based on usage of a web service. The computer system captures network traffic including actual requests to a service endpoint of the web service and actual responses from the service endpoint of the web service. The captured network traffic can be analyzed using machine learning to determine one or more operations that are available at the service endpoint, input arguments that are accepted by the service endpoint, and output arguments that are provided by the service endpoint. The computer system can automatically generate service documentation for the web service based on metadata that identifies the operations, the input arguments, and the output arguments.
US09954741B2
An information processing apparatus capable of providing a first user interface (UI) environment and a second UI environment includes a determination unit configured to determine a UI environment that displays a message screen, and a control unit configured to, in a case where a message screen is required to be displayed to a user when a processing request is made to a peripheral device via an application, control a request for displaying the message screen, wherein a message screen adapted for the UI environment determined by the determination unit is displayed according to the request controlled by the control unit after the processing request is input via the application.
US09954735B2
Before restarting an IS-IS protocol process, the first device sends an IIH packet with a RR flag set and a hold time field being a first predetermined value to a second device. The first predetermined value is greater than a normal value of a hold time kept in the second device for the first device, and the first device establishes an adjacency with the second device. After receiving an IIH packet with a RA flag replied by the second device, the first device restarts the IS-IS protocol process and starts to execute a GR process. The IIH packet with the RA flag set is replied by the second device after the second device updates the hold time kept in the second device for the first device according to the first predetermined value.
US09954729B1
Traditional configuration of infrastructure equipment relates to the manual generation of properties and corresponding scripts that was time consuming and had potential errors. A tool for provisioning and configuring network infrastructure equipment is provided. The tool utilizes pre-configured templates to collect information utilized in the configuration of the infrastructure equipment and automatically generate configuration scripts. The tool dramatically increases the ability to configure or re-configure infrastructure equipment.
US09954727B2
A baseboard management controller (BMC) of a system can retrieve logged system events from a non-volatile storage of the BMC and receive a command from an administrator device for the BMC to collect system debug information. The BMC can obtain debug information from a component of the system, in response to receiving the command. The BMC can save the debug information to a debug file and send the debug file to the administrator device.
US09954726B2
A method includes a compute node transmitting data to a port of a first switch at a first data transfer rate, monitoring the temperature of the port, and a management node providing an instruction to the compute node in response to the port temperature exceeding a temperature limit, wherein the instruction instructs the compute node to reduce the first data transfer rate to the port. The method further includes the compute node reducing the data transfer rate to the port in response to receiving the instruction. The method is applicable to multiple compute nodes transmitting data to multiple ports of a first switch. The data transfer rate may be reduced by throttling the compute node, renegotiating a link speed between the compute node and the port, or redirecting data to another switch. The methods facilitate thermal control of a switch without its own thermal throttling capability.
US09954714B2
A system and method for acquiring a frequency hopped spread spectrum (FHSS) signal with no prior knowledge about the FHSS signal. In example implementations, an RF signal is received at a receiver. The RF signal is converted into a stream of digital signal levels. Energy detections are identified in the stream of digital signal as possible hops of a FHSS signal. A feature set is blindly acquired for defining an FHSS signal from the energy detections. At least one waveform classification is generated based on the feature set. Energy detections are re-acquired from the RF signal based on the waveform classification.
US09954712B1
Methods and architectures for blind detection of physical layer control (PLC) signaling for transmitters and receivers having respective misaligned inverse fast Fourier transforms (IFFTs) and (FFTs) includes opening a frequency tracking offset calibration circuit, estimating or calculating a phase discontinuity due to FFT misalignment, closing the frequency tracking offset calibration circuit and applying a frequency correction that includes a frequency offset less the calculated or estimated phase discontinuity.
US09954705B2
The disclosure provides a frequency synthesizer. It includes a PFD that generates an up signal and a down signal in response to a reference signal and a feedback signal. A charge pump generates a control voltage in response to the up signal and the down signal. A low pass filter generates a filtered voltage in response to the control voltage. An oscillator circuit generates an output signal in response to the filtered voltage. A feedback divider is coupled between the oscillator circuit and the PFD, and divides the output signal by a first integer divider to generate the feedback signal. A sigma delta modulator (SDM) generates a second integer divider in response to the feedback signal, the reference signal, the output signal and the first integer divider. A digital filter is coupled between the SDM and the feedback divider, and filters quantization noise associated with the SDM.
US09954704B2
A transmitter transmits payload data using Orthogonal Frequency Division Multiplexed (OFDM) symbols, the transmitter comprising frame builder circuitry configured to receive the payload data to be transmitted and to receive signalling information for use in detecting and recovering the payload data at a receiver, and to form the payload data into frames with the signalling information as a preamble to each of the frames for transmission. Modulator circuitry is configured to modulate one or more first OFDM symbols with the signalling information to form the preamble of each frame and to modulate one or more second OFDM symbols with the payload data to form post preamble waveform of each frame. Transmission circuitry is configured to transmit the one or more first OFDM symbols as a preamble and the second OFDM symbols as the post preamble waveform. The transmitter includes signature sequence circuitry configured to provide a transmitter identifier signature sequence, the transmitter identifier signature sequence being one of a set of signature sequences to represent one of a predetermined set of identifiers which identify the transmitter to a receiver, and a combiner configured to combine the transmitter identifier signature sequence with one or more of the first OFDM symbols of the preamble or one or more additional OFDM symbols of the preamble dedicated to carry the transmitter identifier. A receiver can therefore be configured to identify the one or more of the first OFDM symbols of the preamble or one or more additional OFDM symbols of the preamble dedicated to carry the transmitter identifier, and to identify the transmitter of the received signal from the transmitter identifier sequence.
US09954699B2
The present invention proposes a demodulator device, a receiver and a demodulation method for M-ary amplitude shift keying systems (MASK) that requires partial knowledge of the CSI, namely, the channel attenuation coefficient. Therefore, the new demodulator, receiver and demodulation method do not require the knowledge of the channel phase shift. Consequently, no complicated channel estimation techniques are required, and the system will be very robust to the system impairments such as phase noise, I-Q imbalance, etc. In this sense, the new technique is denoted as semi-coherent demodulation (SCD). To reduce the complexity of the new SCD, a suboptimal demodulator is derived which has much lower complexity than the optimal while providing almost the same error probability.
US09954678B2
A computer system can send a secure request over a named-data network to a remote device by generating an Interest with encrypted name components. During operation, the computer system can receive or obtain a request for data, such as from a local user or from a local application. If the system cannot satisfy the request locally, the system can determine at least a routable prefix and a name suffix associated with the request. The system can generate the secure Interest for the request by determining an encryption key that corresponds to a session with the remote computer system, and encrypts the name suffix using the session encryption key. The system then generates an Interest whose name includes the routable prefix and the encrypted name suffix, and disseminates the Interest over a named-data network to send the request to the remote computer system.
US09954677B2
A method of inserting chunks of bits into a target stream of bits within a computing system. The method includes the step of providing a target stream of bits. The method includes the step of providing a chunk stream of bits. The method includes the steps of chunking the chunk stream of bits into one or more chunks of bits; performing a random edit process on the target stream of bits by determining a random point within the target stream of bits and identifying random points within the target stream based on the mask stream until either the mask has no more insertion points or the target stream has no more bits.
US09954672B1
A digital signal input circuit including an isolating circuit and a voltage determining circuit is presented, where a first port of an input end of the isolating circuit receives a digital signal, an output end of the isolating circuit outputs the digital signal, and when the isolating circuit is open, the isolating circuit is configured to output a first level, or when the isolating circuit is closed, the isolating circuit is configured to output a second level; and the voltage determining circuit is configured to determine, according to a level of the digital signal, whether the isolating circuit is open or closed. According to the digital signal input circuit, the voltage determining circuit determines a level of a digital signal, thereby correctness of digital signal level conversion is increased.
US09954670B2
Described herein are architectures, platforms and methods for (NFC) frame bit detection. A frame bit detector includes a sample-based bit detector that receives samples which may be data and non-data (noise), identifies data bits at every sample input time, and the likelihoods that the identified data bits are part of data. The frame detector includes a maximum likelihood frame detector configured to receive bits from the sample-based bit detector and the likelihood of each bit that the bit is data, and calculate frame likelihood.
US09954669B2
Various embodiments provide a method and apparatus for providing improved anchor-anchor clock synchronization. In particular, the skew and offset of a second clock in reference to a first clock is determined based on measured transmit and receive times of at least two two-way transmissions between a first anchor using the first clock and a second anchor using the second clock.
US09954664B2
Methods and systems for providing a virtual private network service on a per mobile application basis are presented. In some embodiments, a mobile device that is connected to private network may determine that one of its mobile applications is requesting to communicate with a private network. The mobile device may intercept one or more system calls to communicate with the private network issued by the mobile application. The mobile device may generate a communication link to a virtual private network (VPN) server on a port of the mobile device through which to transmit communications from the mobile application to the private network. The mobile device may instruct the VPN server to transmit one or more messages from the mobile application to an access gateway for forwarding to the private network.
US09954660B2
A user equipment receives, from the base station apparatus, bit information. The bit information indicates first information indicating one or more antenna ports and second information indicating a number of layers for downlink data symbols.
US09954657B2
Disclosed are a method and an apparatus for estimating channel information. A terminal estimates a channel coefficient for each of subcarriers included in each symbol of the received signals, calculates power of the received signal matched to each of the subcarriers, calculates an interference estimation parameter for each of the subcarriers based on the power of the received signal matched to each of the subcarriers and based on power of a channel coefficient for a subcarrier on which the received signal has maximum power among the subcarriers, and calculates a non-Gaussian characteristic parameter of an interference signal related to the received signals based on the interference estimation parameters calculated for the subcarriers of all the symbols of the received signals.
US09954642B2
In some embodiments, a first wireless device initializes a first threshold and sends a first frame transmission to a second wireless device. When the first wireless device determines that the first frame transmission was successful, it adjusts the first threshold to a second threshold that is greater than the first threshold. Additionally, when the first wireless device determines that the first frame transmission was not successful, the first wireless device adjusts the first threshold to a third threshold that is less than the first threshold. The thresholds can be associated with any measure, including carrier sensitivity and/or energy detection.
US09954632B2
A communication system including a communication platform, and a downlink communication module connected to the communication platform and having a matrix power amplifier, the matrix power amplifier including an input hybrid matrix, an output hybrid matrix, a bank of high power amplifiers disposed between and in communication with at least the input hybrid matrix and the output hybrid matrix, and a bank of adjusters disposed between and in communication with at least the input hybrid matrix and the output hybrid matrix. The communication system further includes a driver circuit connected to each adjuster in the bank of adjusters, the driver circuit being configured to command each adjuster to modify communication signals, passing through the matrix power amplifier, at time division multiple access rates.
US09954629B2
A repeater including an analog attenuator configured to attenuate an analog signal in response to a first control signal; an analog to digital converter (ADC) configured to convert the attenuated analog signal into a digital signal; a digital attenuator configured to attenuate the digital signal in response to a second control signal; and an attenuation controller configured to calculate average power and peak power of the attenuated digital signal, determine an attenuation value for each value of the calculated average power and peak power, and generate at least one of the first and second control signals based on the determined attenuation values.
US09954627B2
A quadrature demodulator includes a quadrature demodulating circuit configured to generate an analog in-phase signal and an analog quadrature signal based on an output signal of a low noise amplifier, and a controller configured to cause a thermal noise, instead of the output signal of the low noise amplifier, to be input to the quadrature demodulating circuit, when a correction parameter to correct a mismatch between the in-phase and quadrature signals is being calibrated.
US09954623B2
Provided are methods and systems for controlling a phase characteristic of entangled photon pairs. The phase characteristic may be a relative phase difference between photons of the entangled photon pair. Also provided are methods and systems for stabilizing distributed interferometers used in quantum communication systems.
US09954619B2
Various examples are provided for jamming avoidance response (JAR), and photonic implementations thereof. In one example, a method includes generating optical pulses that correspond to raising envelope of a beat signal associated with an interference signal and a reference signal; generating optical spikes that correspond to positive zero crossing points of the reference signal; providing a phase output that indicates whether the beat signal is leading or lagging the reference signal, the phase output based at least in part upon the optical spikes; and determining an adjustment to the reference frequency based at least in part upon the optical pulses and the phase output. In another example, a JAR system includes a photonic P-unit to generate the optical pulses; a photonic ELL/T-unit to generate the optical spikes; a photonic TS unit to provide the phase output; and a logic unit to determine the adjustment to the reference frequency.
US09954618B1
An apparatus includes an optical data modulator, an electrical tuner located to control an operating wavelength of the optical data modulator, a photo-sensitive diode or photo-sensitive transistor, and an electronic feedback controller. The photo-sensitive diode or photo-sensitive transistor is connected to receive light from an optical output of the optical data modulator and is configured to output an electrical signal representative of a measured intensity of said received light. The electronic feedback controller is connected to receive the electrical signal from the optical intensity detector and to operate said electrical tuner based on an alternating current component of said measured intensity.
US09954615B2
To provide a method capable of easily compensating waveform distortion due to a non-linear effect caused by a complicated electric circuit, and a device for implementing the method. Provided are a method capable of effectively compensating signal degradation such as waveform distortion due to a nonlinear effect caused by an optical fiber that is an optical transfer path using an optical phase conjugate signal pair at the time of optical up-conversion or down-conversion, and a device capable of implementing the method. This emission device 25 includes an optical modulator 11, a signal source 13, an optical fiber 15, a multiplexing unit 17, a multiplexing local signal source 19, an optical detector 12, and a transmission antenna 23.
US09954614B2
A positioning system by visible light includes at least one luminaire, at least one positioning transceiver and a server. The luminaire is disposed at a specific position and has a first identification code, and emits the first identification code in a selected signal form. Each positioning transceiver has a second identification code, and further includes a receiving device and a wireless transceiver. The receiving device movably receives the first identification and demodulates the first identification code. The wireless transceiver transmits the first and the second identification codes to a receiving terminal. The server is coupled to the at least one positioning transceiver via the receiving terminal, and obtains the first and the second identification codes so as to position the at least one positioning transceiver in a space defined by the at least one luminaire.
US09954610B2
There are provided methods and devices for determining a quality parameter characterizing an optical communication signal, the methods being performed by signal detection devices. At the transmitting end, there are obtained a signal power P1 of a first optical signal, a signal power P2 of a second optical signal, a signal power P3 of a third optical signal, optionally a signal power P4 of a fourth optical signal, and a total signal power Ps of a channel where the first, second, third and optional fourth optical signals are located. At a detection point, there are further obtained a signal power P1′ of the first optical signal, a signal power P2′ of the second optical signal, a signal power P3′ of the third optical signal and optionally a signal power P4′ of the fourth optical signal. There are then determined a signal deformation factor SDF and/or an optical signal to ASE noise ratio OSNR from the obtained signal powers.
US09954603B2
A profile-based scheduler is disclosed. In other embodiments, the profile-based scheduler may profile previously accessed websites and/or FTP sites. In doing so, the profile may compile bandwidth requirements for all such profiled websites and/or FTP sites within a lookup table. When a website and/or FTP site is accessed, the profiler may grant the bandwidth associated with the website or FTP site within the lookup table. In some embodiments, the profiler may create entries not only based on websites and/or FTP sites but may also profile users, TCP connections, web browser configurations and/or web browser types.
US09954602B2
An apparatus comprising a backplane and a number of transponder slices connected to the backplane to form a transponder. The number of transponder slices comprise an analog front end configured to receive an analog input comprising a first plurality of bandwidths and a first plurality of interface frequencies, analog to digital converters configured to convert the analog input to digital signals, a digital channelizer configured to process the digital signals to generate a plurality of frequency slices, a digital combiner configured to assemble the plurality of frequency slices to form output sub-bands, a digital switch configured to route the plurality of frequency slices from the digital channelizer to the digital combiner, digital to analog converters configured to convert the output sub-bands to an analog output, and an analog back end configured to transmit the analog output comprising a second plurality of bandwidths and a second plurality of interface frequencies.
US09954596B2
Disclosed in an embodiment of the disclosure is an interference rejection combining (IRC) method supporting transmit diversity, in which an N*N interference and noise covariance matrix corresponding to one subcarrier is generated from signals, in a transmit diversity mode, received at cell reference signal (CRS) resource positions via N receiving antennas, where N is greater than or equal to 3; Cholescy decomposition and upper triangular matrix inversion is performed on the N*N interference and noise covariance matrix to obtain an N*N block matrix; the N*N block matrix is expanded to a 2N*2N noise whitening matrix; and the received signals and channel estimation values are whitened according to the noise whitening matrix, and the whitened received signals and channel estimation values used to obtain a minimum mean square error-IRC (MMSE-IRC) processing result. Also disclosed are an IRC device supporting the transmit diversity, and a computer storage medium.
US09954589B2
The present invention discloses a method for feeding back channel state information, a method for receiving channel state information, and a device. The method includes: selecting, by a terminal, a precoding matrix from a preset codebook subset for each subband in N subbands according to a configured reference signal, where each precoding matrix in the codebook subset is identified by a first PMI, a second PMI, and a third PMI that is used to indicate a phase relationship, first PMIs corresponding to the precoding matrices selected by the terminal for all subbands in the N subbands are the same, the precoding matrix selected for each subband in the N subbands corresponds to one second PMI, and third PMIs corresponding to the precoding matrices for all subbands in the N subbands are the same; and reporting, by the terminal, the first PMI, the second PMI, and the third PMI.
US09954580B2
A power transfer system is provided. The power transfer system includes a field-focusing element including a dielectric material. The dielectric material includes a ceramic material and a polymer material. The ceramic material includes an oxide compound comprising titanium and the polymer material includes a resin.
US09954578B2
It is presented a method, performed in a one time password, OTP, generating device. The OTP device comprises an NFC/RFID, Near Field Communication/Radio Frequency Identification, interface. The method comprises the steps of: upon the OTP generating device being inserted into the RF field, generating a new OTP code; formatting the OTP code into a static message; responding to interrogation requests from an RFID/NFC reader; and responding to read requests from the RFID/NFC reader with the OTP code being part of a message as if it were a static message, using standardized methods. A corresponding device OTP generating device is also presented.
US09954575B2
The present invention is directed to the selective provision of interference canceled signal streams to demodulating fingers in a communication receiver. According to the present invention, potential interferer signal paths are identified. Signal streams having one or more potential interferer signals removed or canceled are created, and a correlation is performed to determine whether the strength of a desired signal path increased as a result. If the correlation indicates that the strength of a desired signal path was increased by the signal cancellation, the interference canceled signal stream is provided to the demodulation finger assigned to track the desired signal path. If the correlation determines that the strength of the desired signal path did not increase as a result of performing interference cancellation, the raw or a different interference canceled signal stream is provided to the demodulation finger.
US09954574B2
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
US09954572B2
An electronic device having an enclosure with a sealing element to prevent ingress of contaminants at an interface between sealing element and a material is disclosed. The material may include an injection molded material that forms at least part of a radio frequency transparent window. The enclosure may include a first channel that receives the material. A second channel may open to the first channel and receive the sealing element. The sealing element may initially extend at least partially into the first channel. However, the material may provide compression forces to the sealing element to compress the sealing element out of the first channel, or at least compress the sealing element further into the second channel. The sealing element may provide a counterforce against the material to increase or enhance a seal against ingress attempting to pass through the enclosure at the interface between sealing element and the material.
US09954567B2
According to one embodiment, a baseband integrated circuit is configured to: perform division between a first component of a baseband signal modulated by a minimum shift keying scheme and the first component of a predetermined first synchronization word signal; select the division result corresponding to a frequency offset from among a plurality of division results; interpolate the selected division result; and approximate the interpolated division result by a sine wave, and estimate the frequency offset based on an approximated sine wave.
US09954564B2
A filtered electromagnetic coupler includes a main transmission line extending between an input port and an output port, and a coupled line section extending between a coupled port and an isolation port. The coupler is configured to couple signal power from the main transmission line to provide coupled signals at the coupled port, and a filter subsystem is connected to the coupled port to filter the coupled signals. The filter subsystem includes filters configured to pass or reject coupled signals by frequency, and the filter subsystem provides the filtered output signal to a measurement node.
US09954559B2
An apparatus includes a memory and a controller. The memory may be configured to store data. The memory generally comprises a plurality of memory units each having a size less than a total size of the memory. The controller may be configured to generate a set of converted log likelihood ratios by scaling a set of original log likelihood ratios using a selected scalar value, wherein the controller determines the selected scalar value by generating a plurality of sets of scaled log likelihood ratios by scaling the set of original log likelihood ratios with a plurality of corresponding scalar values, calculating a plurality of respective correlation coefficients each measuring a similarity of a respective set of scaled log likelihood ratios to the set of original log likelihood ratios, and selecting the scalar value corresponding to the set of scaled log likelihood ratios whose respective correlation coefficient is highest as the selected scalar value.
US09954551B2
A packet processing system having a barrel compactor that extracts a desired data subset from an input dataset (e.g. an incoming packet). The barrel compactor is able to selectively shift one or more of the input data units of the input dataset based on individual shift values for those data units. Additionally, in some embodiments one or more of the data units are able to be logically combined to produce a desired logical output unit.
US09954546B2
An automated test equipment for analyzing an analog time domain output signal of an electronic device under test includes: an analog-to-digital converter configured for converting an analog time domain signal; a sampling clock configured for producing a clock signal; a time-to-frequency converter configured for converting the digital time domain signal into a digital frequency domain signal so that the digital frequency domain signal is represented by frequency bins; a memory device configured for storing a set of empirically determined operating parameters; and a jitter components removal module for removing jitter components produced by the analog-to-digital converter, wherein the jitter removal module is configured for subtracting the lower spur and the upper spur of each frequency bin of the frequency bins from the digital frequency domain signal so that the cleaned digital frequency domain signal is produced.
US09954545B2
A circuit device includes a control circuit having a successive approximation register, a D/A conversion circuit adapted to perform D/A conversion on output data from the successive approximation register, and a comparison circuit adapted to compare an analog input signal and an output signal from the D/A conversion circuit with each other, the control circuit includes an upper limit value register and a lower limit value register adapted to respectively hold an upper limit value and a lower limit value of a conversion range, and increases the upper limit value or decreases the lower limit value in the case in which the same comparison result has been output by the comparison circuit a predetermined number of times or more.
US09954543B1
A Phase-Locked Loop (PLL) has a multi-curve voltage-controlled oscillator (VCO) with a curve-select input that adjusts the capacitance within the VCO and thus the VCO gain. A calibration unit generates a curve-select value to the VCO. Coarse calibration selects a Center Curve CC value using binary search of the curve-select bits. During fine calibration, the number of pulses of the VCO output are counted and stored for all curves in a target window around the center curve. The stored pulse counts are compared to an ideal pulse count for a specified frequency, and the curve-select value for the closest-matching pulse count is applied to the VCO. The target window is much smaller than all possible curves, so calibration is performed only on a few curves, reducing calibration time. A switch before the VCO opens the loop for faster open-loop calibration. Pulses are counted digitally without expensive analog comparators.
US09954534B2
Aspects of various embodiments of the present disclosure are directed to methods and circuits for preventing hold time violations in clock synchronized circuits. In an example implementation, a circuit includes at least a first flip-flop, a second flip-flop, and a level-sensitive latch connected in a signal path from the first flip-flop to the second flip-flop. A clock node of the first flip-flop is connected to receive a first clock signal and a clock node of the second flip-flop is connected to receive a second clock signal. The propagation delay from the first flip-flop through the level-sensitive latch to the second flip-flop is smaller than the skew between the first clock and the second clock, thereby presenting a hold time violation. A level-sensitive latch control circuit is configured to prevent the hold time violation by providing a pulsed clock signal to a clock node of the one level-sensitive latch circuit.
US09954531B2
A novel electronic device including a reconfigurable circuit is provided. In the electronic device including a reconfigurable circuit capable of executing multi-context operation, a context selection signal is locally generated. For example, a context selection signal is generated in the reconfigurable circuit with the use of context determination data contained in an output of another logic block, for example. The range of application of the context selection signal can be set as appropriate by a user. Thus, multi-context operation performed locally and partly enables efficient use of the circuit. Memory usage can be reduced and its efficiency can be improved compared to the case of using global multi-context driving. Other embodiments may be disclosed and claimed.
US09954527B2
A balanced, charge-recycling repeater link is disclosed. The link includes a first set of segments operating in a first voltage domain and a second set of segments operating in a second voltage domain. The link is configured to transmit a first signal over at least one segment in the first set of segments and at least one other segment in the second set of segments. Each segment of the link includes at least one active circuit element configured to charge or discharge one or more corresponding interconnects within the link and a level shifter configured to shift the level of a signal on a last interconnect of the segment from the first voltage domain to the second voltage domain or the second voltage domain to the first voltage domain.
US09954519B2
A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.
US09954517B2
Apparatuses, duty cycle adjustment circuits, adjustment circuits, and methods for duty cycle adjustment are disclosed herein. An example duty cycle adjustment circuit may be configured to receive a signal and adjust a duty cycle of the signal a first amount using a coarse adjustment. The duty cycle adjustment circuit may further be configured, after adjusting the duty cycle of the signal a first amount, to adjust the duty cycle of the signal a second amount different from the first amount using a fine adjustment to provide a duty cycle adjusted signal.
US09954514B2
A cascaded integrator-comb filter (CIC) that includes a differentiator, a rate changer, an integrator, and a multiplier. The differentiator is configured to differentiate an input signal to produce a differentiated input signal. The rate changer is coupled to the differentiator and is configured to interpolate the differentiated input signal based on an interpolation rate to produce an upsample signal. The integrator is coupled to the rate changer and is configured to integrate the upsample signal to produce an output signal. The multiplier is coupled to the differentiator, rate changer, and integrator and is configured to increase the output signal amplitude based on the interpolation rate.
US09954509B2
An efficiency variable antenna is provided, the efficiency variable antenna including: a feeding portion; a first grounding portion; a second grounding portion; a first switching element configured to turn on or off the feeding portion and the first grounding portion; and a second switching element configured to turn on or off the feeding portion and the second grounding portion.
US09954497B2
Circuits for low noise amplifiers with interferer reflecting loops are provided. In some embodiments, circuits for a low noise amplifier with an interferer reflecting loop are provided, the circuits comprising: a low noise amplifier (LNA) having an input and an output; a buffer having an input coupled to the output of the LNA and an output; and notch filter having an input coupled to the output of the buffer and an output coupled to the input of the LNA.
US09954496B2
At least some embodiments are directed to a system comprising an amplifier containing a first bias current source and configured to provide an output voltage at a node, a gain stage coupled to the node and comprising a second bias current source, and a buffer stage coupled to the node and comprising third and fourth bias current sources and an additional set of bias current sources, the third and fourth bias current sources are able to activate output transistors that are configured to increase current provided to a load. The system also comprises a controller configured to activate the first bias current source, to activate the second bias current source after the first bias current source is activated, to activate the bias current sources in the set after the first bias current source is activated, and to activate the third and fourth bias current sources after the first and second bias current sources are activated and after the bias current sources in the set are activated.
US09954491B2
Systems and method related to switchable output stages in power amplifiers. In some embodiments, a power amplifier (PA) circuit can include a driver stage configured to amplify a radio-frequency (RF) signal. The PA circuit can further include a plurality of output stages, with each output stage being configured to be capable of further amplification the RF signal. The PA circuit can further include a switch implemented to route the amplified RF signal from the driver stage to a selected one of the plurality of output stages, such that the selected output stage further amplifies the amplified RF signal.
US09954489B2
Circuitry capable of performing fractional clock multiplication by using an injection-locked oscillator is described. Some embodiments described herein perform fractional clock multiplication by periodically changing the injection location, from a set of injection locations, where the injection signal is injected and/or by periodically changing a phase, from a set of phases, of the injection signal that is injected into the ILO.
US09954488B2
A varainductor including a signal line disposed over a substrate. The varainductor further includes a first ground plane over the substrate, the first ground plane disposed on a first side of the signal line, and a second ground plane over the substrate, the second ground plane disposed on a second side of the signal line opposite the first side of the signal line. The varainductor further includes a first floating plane over the substrate, the first floating plane disposed between the first ground plane and the signal line, and a second floating plane over the substrate, the second floating plane disposed between the second ground plane and the signal line. The varainductor further includes an array of switches, the array of switches is configured to selectively connect the first ground plane to the first floating plane, and to selectively connect the second ground plane to the second floating plane.
US09954486B2
An apparatus comprises a digitally controlled circuit having a variable capacitance and a controller configured to adjust a magnitude of the variable capacitance of the digitally controlled circuit. The digitally controlled circuit comprises a plurality of gain elements, the plurality of gain elements comprising one or more positive voltage-to-frequency gain elements and one or more negative voltage-to-frequency gain elements. The controller is configured to adjust the magnitude of the capacitance by adjusting the gain provided by respective ones of the gain elements in an alternating sequence of the positive voltage-to-frequency gain elements and the negative voltage-to-frequency gain elements.
US09954475B2
A motor driving apparatus includes a rectifying circuit to rectify an AC power supplied from an external AC power source, one pair of film capacitors to output a DC voltage and a neutral point voltage by removing a ripple of a voltage rectified by the AC-DC conversion unit, a 3-level inverter to supply a driving current to a motor using the DC voltage applied from the DC link unit, and a control module to control the 3-level inverter. The control module includes a motor speed control module to control the rotation of the motor, a DC voltage control module to stabilize the DC voltage, a neutral point voltage control module to stabilize the neutral point voltage, and a stabilizing voltage limiting module to control the DC voltage control module and the neutral point voltage control module according to an output of the motor speed control module.
US09954461B1
A controller for use in a power converter includes a current sense circuit to generate a current limit signal and an overcurrent signal in response to a source signal, a first sense finger signal, and a second sense finger signal. A control circuit is coupled to generate a control signal in response to the current limit signal and the overcurrent limit signal. A drive circuit is coupled to generate a drive signal with a multiple stage gate drive in response to the control signal. The drive signal in a first stage of the multiple stage gate drive is a weak turn on drive signal to turn a switch on slowly to reduce electromagnetic interference (EMI). The drive signal in a second stage of the multiple stage gate drive is a strong turn on drive signal to fully turn on the switch quickly to enable accurate current sensing of the switch.
US09954456B2
A converter circuit is disclosed. The converter circuit includes a transformer and a primary circuit connected to the primary side of the transformer, where the primary circuit includes a first switch connected to a ground. The converter circuit also includes a second switch connected to the first switch, and a clamping capacitor connected to the second switch and to the input. The converter circuit also includes a secondary circuit connected to the secondary side of the transformer, where the secondary circuit includes a rectifying element, and an output capacitor connected to the rectifying element. In addition, the output capacitor has a substantial effect on resonance of the converter circuit.
US09954442B2
A comparator circuit includes a first comparator, a second comparator, and a logic portion. The logic portion adjust a variable reference voltage input to the second comparator to become close to a reference voltage input to the first comparator, during a period from a time point when reverse current of current flowing in a coil disposed in a switching power supply device is detected in a state where a first comparison signal is output as a comparison signal while the first comparator and the second comparator are operated, until a first predetermined period of time elapses in a state where switching operation of the switching power supply device is stopped (excluding a period from a time point when the reverse current is detected until a second predetermined period of time shorter than the first predetermined period of time elapses).
US09954433B2
Power supply and drive device for a permanent magnet motor including a full-wave voltage rectifier stage, which can be supplied with an alternating current voltage to provide a rectified voltage, a power factor corrector stage, a smoothing capacitor to provide a direct current voltage and a motor drive stage, which is supplied with the direct current voltage and provides a signal indicating the power required by the motor. The smoothing capacitor is not of the electrolytic type and the power factor corrector stage has feedback control means to generate a reference current as a function of the direct current voltage and of the signal indicating the power required and to control an input current of the power factor corrector stage as a function of the reference current.
US09954431B2
A starting circuit (10) of a power management chip, comprising: a starting capacitor (C3) which is used for connecting a power supply via an external resistor (R2) to perform charging; a switch circuit (100) which is connected between the external resistor (R2) and the starting capacitor (C3); a voltage detection circuit (200) which is used for detecting a voltage on the starting capacitor (C3) and is connected to the switch circuit (100) so as to control the on/off switching of the switch circuit (100); and a voltage maintaining circuit (300) which is connected between the starting capacitor (C3) and an operating circuit of the power management chip and is used for acquiring a voltage that maintains the starting capacitor (C3) from the operating circuit of the power management chip, wherein when the voltage detection circuit (200) detects that the starting capacitor (C3) reaches the starting voltage of the power management chip, the broken circuit of the switch circuit (100) is controlled. Further provided is a power management chip including the above-mentioned starting circuit (10). Disconnecting an external power source from the starting capacitor after the operating circuit of the power management chip is started can reduce the electric energy consumption.
US09954430B2
In some embodiments, powered devices, circuits, and methods are disclosed that may include biasing a hot swap switch to couple a capacitor of a DC-DC converter to negative supply node when an input voltage exceeds a threshold and biasing a telephony switch to couple a positive supply node to a negative supply node when the input voltage exceeds the threshold. Further, the method may further include deactivating the hot swap switch after a period of time, and continuing to bias the telephony switch.
US09954427B2
A controller selects a first switch vector based on a current, voltage, or power of a multi-phase load or power source. The first switch vector identifies a first state for each of a plurality of half-bridges of a converter as on or as off during a first interval. A second switch vector is selected based on the current, voltage, or power of the multi-phase load or power source. The second switch vector identifies a second state for each of the half-bridges as on or as off during a second interval. The first interval is computed based on the selected first switch vector. The second interval is computed based on the selected second switch vector. Each of the plurality of half-bridges is controlled as on or as off during the first interval based on the selected first switch vector and during the second interval based on the selected second switch vector.
US09954424B2
Provided is a broadband and large displacement angular vibrator, comprising an outer housing, a vibration table, a main spindle, a moving coil assembly, a magnetic circuit assembly, a holding brake assembly, a motor and closed loop control assembly thereof, an electric viscoelastic feedback control assembly, an air bearing, and an angular displacement sensor; the moving coil comprises a moving coil substrate and a coil; the moving coil substrate is fixed to the main spindle; the magnetic circuit assembly comprises a magnetic ring, a central magnetic pole, and magnets; the magnetic ring, central magnetic pole, magnets, and air gap form a closed magnetic circuit; the central magnetic pole is located inside the magnetic ring, the magnets are located between the magnetic ring and the central magnetic pole, and the magnets are attached to the central magnetic pole; the outer housing has the holding brake assembly; the holding brake assembly comprises a brake lining, an oil distribution sleeve, and an oil reservoir having a piston; the brake lining and the oil distribution sleeve enclose a hydraulic oil chamber; when the hydraulic oil is pressed into the hydraulic oil chamber from the oil reservoir, the magnetic circuit assembly brakes; when the hydraulic oil flows back to the oil reservoir, the magnetic circuit assembly rotates with the motor rotor. The present angular shaker has the advantage of being able to switch between intermediate-frequency and low-frequency, and has small output waveform distortion.
US09954418B2
A power tool includes a brushless motor having a stator and a rotor, which includes a rotary shaft extending in a front-rear direction of the power tool. The rotary shaft rotates a spindle that extends in an up-down direction of the power tool. A fan is fixedly coupled to the rotary shaft and rotates therewith. A switch is disposed rearward of the brushless motor and a controller is disposed rearward of the switch in the front-rear direction. A battery pack is disposed rearward of the controller. A main-body housing houses the brushless motor, the switch and the controller. The main-body housing includes a first tubular part, which houses the brushless motor, and a second tubular part, which houses the switch. The diameter of the second tubular part is smaller than the diameter of the first tubular part.
US09954412B2
A stator includes: a sensor substrate attached to one end of a stator core in an axial direction of the stator core, the sensor substrate being provided with a bearing through hole and being provided with a notch on a periphery, the notch being used for leading out a power supply lead and a sensor lead; a sensor-lead board-in connector disposed between the bearing through hole and the notch on the surface of the sensor substrate on the counter-stator side, the sensor lead being connected to the sensor-lead board-in connector; and a power-supply-lead board-in connector disposed on the surface of the sensor substrate on the counter-stator side such that the power-supply-lead board-in connector faces the sensor-lead board-in connector with the bearing through hole therebetween, the power supply lead being connected to the power-supply-lead board-in connector.
US09954407B2
A stator or rotor for an electric motor or generator comprising a plurality of teeth for receiving coil windings, wherein each tooth has an injection molded plastic layer formed on a plurality of sides of each tooth with a first gap formed in the injection molded plastic layer on a first side of each of the teeth with a first insulation element placed in the first gap formed in the injection molded plastic layer, wherein the injection molded plastic layer and first insulation element are arranged to electrically insulate the plurality of teeth from the coil windings.
US09954403B2
A rotor yoke is rotatable about an axis, is adapted for a plurality of permanent magnets to be mounted therein, and includes a central section, a peripheral section, and a connecting section. The peripheral section is formed with a plurality of outer slots for respectively receiving the permanent magnets. The connecting section is formed with a plurality of inner slots, and a plurality of magnetic reluctance units adjacent to outer slots and each including at least two magnetic reluctance slots that are radially aligned relative to the axis. Each of the magnetic reluctance slots permits portions of magnetic field lines generated by the permanent magnets to pass around the magnetic reluctance slots so as to increase density of the magnetic field lines.
US09954401B2
A wireless power transmitting apparatus converts rotational energy of an axle to electrical energy, transfers the electrical energy to a transmitting coil of the wireless power transmitting apparatus through a power transfer connection pin that connects the inside of the wheel and the outside of the wheel of a vehicle, and wirelessly transmits the electrical energy to the sensor using resonance between a transmitting coil of the wireless power transmitting apparatus and a receiving coil of the sensor in order to use it as a driving power source of a sensor that detects a state of a tire.
US09954399B2
Exemplary embodiments are directed to wireless power transfer including generating an electromagnetic field at a resonant frequency of a transmit antenna to create a coupling-mode region within a near-field of the transmit antenna. A receive antenna placed within the coupling-mode region resonates at or near the resonant frequency. The receive antenna extracts energy from a coupling between the two antennas. Signaling from the receive antenna to the transmit antenna is performed by generating a first power consumption state for the receive antenna to signal a first receive signal state and generating a second power consumption state for the receive antenna to signal a second receive signal state. Signaling from the transmit antenna to the receive antenna is performed by enabling the resonant frequency on the transmit antenna to signal a first transmit signal state and disabling the resonant frequency on the transmit antenna to signal a second transmit signal state.
US09954397B2
The present disclosure includes a feed unit and a feed system. The feed unit includes a power transmission coil and a coupling coefficient calculation section. The power transmission coil is configured to transmit power to a power reception coil of a receiving unit using a magnetic field. The coupling coefficient calculation section is configured to measure frequency characteristics of input impedance of a rectification circuit of the receiving unit, the rectification circuit being in a non-operating state. The coupling coefficient calculation section is also configured to calculate a coupling coefficient between the power transmission coil and the power reception coil using the frequency characteristics of the input impedance of the rectification circuit that have been measured.
US09954390B2
An emergency battery backup ballast is configured so that it can be fully assembled but in a dormant condition. The emergency battery backup ballast commences normal operation when AC power is supplied to the ballast for the first time. Then if the AC power is removed, one or more lamps (56) which are connected to the output of the ballast can be powered by the battery (54).
US09954389B2
To provide a light-emitting device capable of being used in a wide temperature range. To provide a light-emitting device capable of being used in a low-temperature environment and a high-temperature environment. The light-emitting device includes a light-emitting panel, a secondary battery, a circuit, and a sealing structure. The light-emitting panel includes a light-emitting element. The light-emitting element can emit light with power supplied from the secondary battery. The circuit includes an antenna and can charge the secondary battery wirelessly. The light-emitting panel, the secondary battery, and the circuit are provided in the sealing structure. The sealing structure includes a portion through which light emitted from the light-emitting element passes.
US09954381B2
A power-regulating charger is an apparatus used to manage the flow of electrical power to the battery of a mobile computing device. To accomplish this, the power-regulating charger includes an electrical plug, an output terminal, a shutoff switch, a microcontroller, and a wireless communication module. The electrical plug is a male connection terminal used to connect the power-regulating charger to an external power supply. The output terminal is an electrical terminal used to transfer power from the power-regulating charger into the connected mobile computing device. The shutoff switch is electrically connected between the electrical plug and the output terminal and is used to open the circuit between these two components. The microcontroller is a processing device that directs the shutoff switch to enable or inhibit the transfer of power. The wireless communication module receives commands that are wirelessly transmitted to the power-regulating charger from the mobile computing device.
US09954380B2
A charger cable apparatus includes a charger cable with a first end and a second end, each end including a connector interface adapted for engagement with a complementary connection port or plug. The apparatus also includes decorative tassels provided on each end of the cable that are adapted to slide over the ends of the cables to conceal or to reveal the male connector interfaces. Optionally, the tassels can be incorporated into a sleeve that entirely covers the cable.
US09954371B2
An electric power acquisition section acquires a power demand of a load. An assist control section determines that an assist condition is satisfied when the power demand exceeds a threshold value within a time slot for permitting electric power to be supplied to the load. When determining that the assist condition is satisfied, the assist control section presents a selection prompt to inquire whether or not to activate an assist operation for supplying the electric power from a power storage device, on an operation display device through a notification control section. If there is a response for requesting activation of the assist operation from the operation display device in response to the selection prompt, the assist operation is started. The assist condition is set in a storage unit by a condition setting section.
US09954367B2
An energy storage system is provided with one or more local energy storage systems and a procedure to operate such an energy storage system. The local energy storage systems are connected to a non-local power supply grid and/or one or more local power supply grids each compromising at least one local control unit, which is intended at least for control of the respective energy storage system for localized regulating and system tasks (LRS) for the one or more respective local power supply grids. The energy storage system furthermore comprises a central control unit connected via the communication network to the respective local control units, which is intended for control (SNL) of absorbing (En) and emitting (Ep) energy of the one or more local energy storage systems to the non-local power supply grid, with the central control unit being equipped to dispose of all portions of the local storage capacities (LSKg).
US09954365B2
This document relates to electricity management using modulated waveforms. One example modulates electricity to obtain modulated electricity having at least two different alternating current frequencies including a first alternating current frequency and a second alternating current frequency. The example delivers the modulated electrical power having the at least two different alternating current frequencies to multiple different electrical devices, including a first electrical device configured to utilize the first alternating current frequency and a second electrical device configured to utilize the second alternating current frequency. The modulated electricity can be delivered at least partly over an electrical line shared by the first electrical device and the second electrical device.
US09954362B2
Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.
US09954357B2
A power supply system offshore plant comprises: a generator; an AC/DC converter converting, AC generated from the generator into DC to supply the direct current to a DC bus; a power load connected to the DC bus to generate regenerative power; a first power storage unit for storing power when a voltage of the DC bus is maintained at a level of a first threshold value or higher for a first time period, and supplying the stored power to the DC bus when the voltage of the DC bus is maintained at a level of a second threshold value or lower for a second time period; and a first resistance unit for consuming power when the voltage of the DC bus is maintained at the level of the first threshold value or higher for a third time period. The third time period is longer than the first time period.
US09954352B2
A power system includes main circuit interrupters each having a load output, feeder circuit interrupters, a number of tie circuit interrupters, and a circuit. The circuit is structured to block communication, at least when at least one of the tie circuit interrupters has an open state between a first and a second of the main circuit interrupters, of a zone selective interlocking output of one of the feeder circuit interrupters having a line input electrically connected to the load output of the first main circuit interrupter to a zone selective interlocking input of the second main circuit interrupter, and of a zone selective interlocking output of a different one of the feeder circuit interrupters having a line input electrically connected to the load output of the second main circuit interrupter to a zone selective interlocking input of the first main circuit interrupter.
US09954343B2
A casing for a laser spark plug, in particular, of an internal combustion engine of a motor vehicle, or of a stationary engine; the casing including at least one casing part and a combustion chamber window joined to the casing part to form a seal at least regionally; characterized in that at least one sealing element, whose coefficient of thermal expansion at an operating temperature of the laser spark plug is greater than the coefficient of thermal expansion of the casing part at the operating temperature of the laser spark plug, is provided between the casing part and the combustion chamber window.
US09954341B2
A flash lamp pumped CTH:YAG resonating laser and method for operating the laser whereby the laser is capable of lasing at the 2097 nm wavelength. The method for operating at the 2097 nm wavelength include utilizing an output coupler with a lower reflectivity and minimizing the passive losses in the laser. The resulting laser is capable of operating with a lower intra-cavity energy density and increased output energy, decreasing the probability of optical breakdown of the laser components when operated.
US09954336B2
A feeder device includes a feed finger and a lifting arm. The feed finger is mounted to and movable relative to the frame along a feed stroke in a feed direction and in an opposite return direction. The feed finger is pivotable towards and away from a feed object. The lifting arm is fixedly mounted to the frame. The feed finger moves relative to the lifting arm as the feed finger is moved along the feed stroke. The lifting arm has a deflectable tip engaging the feed finger. The deflectable tip is deflected as the feed finger is moved in the feed direction. The deflectable tip is un-deflected as the feed finger is moved in the return direction. The un-deflected tip engaging the feed finger and pivoting the feed finger away from the feed object as the feed finger is moved along the lifting arm in the return direction.
US09954334B2
A method produces a brush for a commutator motor, in particularly for a motor vehicle fan, for electrically contacting a connected contact lead to a commutator via a spring-loaded contact with a commutator. Accordingly, a brush material, particularly carbon dust, is poured into a cuboid matrix and compressed by a plunger in a contact direction for forming the brush.
US09954328B2
A card holding member able to be inserted into a card connector via an insertion slot in an outer member and able to hold a card equipped with terminal members, the card holding member comprising a card accommodating portion able to accommodate the card, a connecting base portion connected to the card accommodating portion, a movable sleeve mounted on the connecting base portion slidably in the insertion and ejection directions of the card holding member, a first sealing member forming a seal between the connecting base portion and the movable sleeve, and a second sealing member forming a seal between the insertion slot and the movable sleeve. The use of the two sealing members helps to absorb displacement of the card holding member in case of misalignment between the card connector and the insertion slot.
US09954327B1
A housing slice for forming a modular housing for mounting an electrical component on a grounding rail carries a grounding member for grounding the electrical component to the grounding rail. The grounding member extends outside of the housing slice but does not extend beyond the sides of the housing slice to permit side-by-side stacking of the housing slice carrying the grounding member with other housing slices with or without grounding members.
US09954312B1
An electrical connector for electrically connecting a chip module to a circuit board includes an insulating body with receiving holes running through the insulating body, terminals correspondingly received in the receiving holes, and metal members not in contact with the chip module. Each metal member and the terminal corresponding to the metal member are received in the same receiving hole. Each metal member has a connecting portion disposed at a side of a soldering portion of a terminal, and a clamping portion extending and bending from the connecting portion to bypass the soldering portion and extend along a direction from the side to another opposite side of the soldering portion, so that the clamping and soldering portions jointly clamp a solder ball with a reduced distance between the terminals on a strip and without the terminals being inserted into the same row of receiving holes at intervals for multiple times.
US09954305B2
An electric connector, comprising: a housing, an insulation body received in the housing, and a plurality of terminals held in a plurality of slots of the insulation body. The insulation body comprises a first half body and a second half body separate from the first half body The first half body and the second half body are configured to be detachably assembled together. Therefore, when connecting cables in field, the insulation body may be separated into the first half body and the second half body first. Then the cables may be connected to the terminals held in the first half body and the second half body. The first half body and the second half body may be assembled together after the cables are connected. Using such a detachable insulation body provides larger operation space, thus easing connecting the cables to the terminals in the field.
US09954304B2
In a packing attachment structure, a packing accommodating recess includes an annular body and an engagement part projecting from the body on a plane of a front face of a flange part and in an one-plane direction of the front face. A packing includes an annular body and a to-be-engaged part projecting from the body. In arrangement, the body of the packing is accommodated in the body of the packing accommodating recess, while the to-be-engaged part of the packing is engaged with the engagement part of the packing accommodating recess.
US09954298B2
The electrical connector (122) comprises: a body (124), a first contact (126) fixed to the body (124) and designed to contact a first electrical conductor (123), a second contact (134) fixed to the body (124) and designed to contact a second electrical conductor (112).The electrical connector (122) also comprises a system (142, 144) attaching the electrical connector (122) to the second electrical conductor (112), the attachment system (142, 144) being separate from the second contact (134).
US09954297B2
A terminal fitting having a smaller terminal insertion force than before. The terminal fitting includes a backing material made of a metal material and a plating coating covering a surface of the backing material. The plating coating contains a Sn parent phase and Sn—Pd based particles dispersed in the Sn parent phase and includes an outermost layer having an outer surface in which the Sn parent phase and the Sn—Pd based particles are present. Further, the number of the Sn—Pd based particles present in the outer surface of the plating coating in a state where only the Sn parent phase is removed is 10 to 400 Sn—Pd based particles per 500 μm2.
US09954295B2
A cabled midplane interconnect system includes a cabled midplane interconnect having a first connection and a second connection. A first circuit board has a third connection configured to be coupled to the first connection. A second circuit board has a fourth connection configured to be coupled to the second connection. The connection orientations are assigned such that a midplane cable, having a plurality of conductors, couples the first connection to the second connection so that none of the plurality of conductors crosses another of the plurality of conductors.
US09954291B2
An electrical device includes first and second terminals and a terminal holder holding the first and second terminals. A first insulation layer is provided between the first and second terminals and a second insulation layer is provided between the first and second terminals. The first and second insulation layers are different materials. The first insulation layer is a base layer and the second insulation layer is a high arc tracking resistance rated layer on the base layer to discourage arc tracking on the first insulation layer.
US09954284B1
A dielectric artificial impedance surface antenna (DAISA) including a first dielectric with a thickness, the first dielectric thickness varying to provide a modulated impedance to a signal traversing the first dielectric, the first dielectric having a first surface and a second surface opposite the first surface, and a transparent conductive material coating the second surface.
US09954282B2
A waveguide transmitting an electromagnetic wave having an electric field that oscillates in a first direction in a second direction perpendicular to the first direction. The waveguide includes rectangular waveguide portions, and a protruding wall and a retracted wall that connect a rectangular waveguide portion to another rectangular waveguide portion. Each of the rectangular waveguide portions has a tubular shape extending in the second direction, and an inner wall of each rectangular waveguide portion has a rectangular cross section. The rectangular waveguide portions are arranged in the second direction, and inner spaces of the rectangular waveguide portions are connected to each other. The protruding wall extends from one of a pair of side surfaces of the rectangular waveguide portion opposed in a third direction toward the other of the pair of side surfaces, the third direction being perpendicular to the first and second directions.
US09954279B1
A test system for testing a device under test comprising an antenna array with multiple antennas and capable of controlling a radiation pattern of the antenna array, may comprise a test antenna system for emitting outgoing test signals to the device under test and receiving incoming test signals from the device under test, a control unit for controlling the device under test to set a first radiation pattern with a theoretical main lobe pointing to the test antenna system or to set a second radiation pattern with a main lobe comprising an angle larger than 0° with the main lobe of the first radiation pattern, and a test processing unit for evaluating the device under test based on signal levels of incoming test signals received by the test antenna system from the device under test and/or based on signal levels of outgoing test signals as received by the device under test.
US09954277B2
An antenna unit part is coupled to a housing unit in such a way that the antenna unit part can be relatively oscillated. Acceleration sensors that detect accelerations that occur in an azimuth angle direction and an elevation angle direction are provided in the housing unit. Linear actuators are provided between the housing unit and an antenna unit part so that the linear actuators are able to adjust a relative angle of the antenna unit part with respect to the housing unit. A variation amount calculation unit calculates a variation amount in the elevation angle direction and the azimuth angle direction based on the accelerations detected by the acceleration sensors. A correction amount calculation unit calculates a correction amount to cancel the variation amount calculated by the variation amount calculation unit. The linear actuators are driven based on the correction amount.
US09954276B2
An antenna system and method for fabricating an antenna are provided. The antenna system includes a substrate and an antenna. The antenna includes a conductive particle based material applied onto the substrate. The conductive particle based material includes conductive particles and a binder. When the conductive particle based material is applied to the substrate, the conductive particles are dispersed in the binder so that at least a majority of the conductive particles are adjacent to, but do not touch, one another.
US09954271B2
A radio-frequency device includes a grounding element, a first antenna including a first parasitic element, a second antenna, a third antenna and a second parasitic element, wherein the grounding element is shared by the first, second and third antennas, the second parasitic element is electrically connected to the grounding element for guiding a first reflected signal from the first antenna to the second parasitic element, and the first parasitic element is electrically connected to the grounding element for guiding a second and third reflected signals from the second and third antennas to the first parasitic element, so as to enhance isolations of the first, second and third antennas.
US09954269B2
A mobile wireless communications device may include a plurality of antennas, a plurality of wireless transceivers, and signal processing circuitry. The device may further include a controller for selectively switching the signal processing circuitry to a desired one of the wireless transceivers, and for selectively switching a desired one of the antennas to the desired one of the wireless transceivers. Moreover, the controller may also be for selectively connecting and disconnecting the at least one other one of the antennas to an unused one of the wireless transceivers.
US09954256B2
Provided are a method for welding a battery module and a welded structure, and more particularly, a method for welding a battery module and a welded structure, in which a plurality of battery cells provided with electrode tabs are assembled to form a module and a voltage measurement portion of a voltage measurement means is welded to the electrode tabs so as to secure stability against vibrations and external shocks, thereby increasing reliability of voltage measurement and the voltage measurement portion is welded to the electrode tabs using the same kind of materials so as to facilitate an operation and improve productivity.
US09954255B2
A measurement fixture for a battery cell is provided when the battery cell is connected to an apparatus. The measurement fixture comprises a chamber, a pressure sensor and an expansion sensor. The chamber defines a sealed space for receiving the battery cell. The pressure sensor is mounted to the chamber to sense a change of pressure in the sealed space due to a volume change of the battery cell to calculate pressure in the battery cell and the volume change of the battery cell non-contactly. The expansion sensor is mounted to the chamber to sense a deformation of the battery cell to calculate a correlation between the pressure in the battery cell and the volume change of the battery cell non-contactly.
US09954251B2
Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
US09954247B2
A cathode mixture, a non-aqueous electrolyte secondary battery, and manufacture method thereof are provided. The cathode mixture for a non-aqueous electrolyte secondary battery includes: a cathode active material having an olivine type crystal structure; and an inorganic oxide which does not contribute to charge and discharge. A particle diameter A of the cathode active material lies within a range from 0.1 μm or more to 0.5 μm or less. There is a relation of A>B between the particle diameter A of the cathode active material and a particle diameter B of the inorganic oxide.
US09954225B2
Provided is a positive electrode material for a lithium battery with an atomic ratio expressed by the formula (I) Lia(MxMn2-x)(O4-yZy) for 0.8≤a≤1.2, 0≤x≤1 and 0≤y≤1 in which M is one or more of Li, Na, K, Ca, Mg, Al, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, La, Ce, Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn, Pb and Si and Z is one or more of OH, halogens, N, P, S and O, and the primary particles of the positive electrode material have a spheroidal topography. The adjacent (111) family planes of the primary particles are connected by curved surfaces without obvious edges. A preparing method of a positive electrode material for a lithium battery and a lithium battery are also provided. The positive electrode material of the present invention provides a good high-temperature cycling performance and filling capability.
US09954218B2
Provided is an anode for a secondary battery including: a first anode active material; and a second anode active material having relatively lower hardness than that of the first anode active material. The first anode active material and the second anode active material satisfy Relational Formula 1 0.167
US09954217B2
An all-solid secondary battery has first electrode layers, and second electrode layers laminated on both sides of the first electrode layer with solid electrolyte layers placed in between, wherein at least one first opening is provided which penetrates the first electrode layer and the solid electrolyte layers adjacent to the first electrode layer, and the second electrode layers present on both sides of the first electrode layer are in contact with each other on the inside of the first opening.
US09954214B2
Systems and methods for producing battery parts, such as battery parts, are described herein. In one embodiment, a battery part machine is configured transform a profile of one or more acid rings on a battery part from a first cross-section to a second cross-section. The machine can include a rotatable spindle configured to receive the battery part, and a first tool and a second tool configured to engage the battery part. The orientation of the first tool and the second tool can be configured to engage the battery part at adjustable to polish, crimp, flare or otherwise transform the profile of the acid rings thereon to produce a finished battery part. An operator can input operating parameters to a machine controller to adjust the finished profile of the acid rings produced by the machine without requiring disassembly thereof.
US09954209B2
This battery pack is provided with a housing, a case, a battery cell, a sealing material and a spacer. The case includes a lid member fixed to the housing so as to close a through-hole in the housing. The lid member is bolted to a through-hole peripheral part of the housing. When the internal pressure of the case rises, part of the lid member deforms in a direction away from the through-hole peripheral part, releasing the internal pressure of the case. The battery cell is accommodated inside of the case. The sealing material is arranged between the lid member and the through-hole peripheral part so as to ensure the air-tightness of the case. The spacer is arranged between the lid member and the through-hole peripheral part so as to maintain the interval between the lid member and the through-hole peripheral part.
US09954202B2
A plurality of pixels arranged in a matrix each include an EL element, a transistor, and a transistor. The EL element includes a cathode to which a first voltage is applied. The transistor includes a gate connected to a gate signal line, a source connected to an anode of the EL element, and a drain to which a second voltage having a potential higher than a potential of the first voltage is applied. A method for manufacturing the EL display device includes: applying the second voltage to the anode of the EL element via the transistor, by applying an ON voltage to the gate signal line; and detecting light emission by the EL element, using an optical detector, in a state in which the ON voltage is being applied to the gate signal line.
US09954193B2
In an organic light-emitting element including a first electrode, a second electrode, and a light-emitting layer placed between the first electrode and the second electrode, the light-emitting layer includes a host material, a first emitter, and a second emitter, the emission peak wavelength of the first emitter is longer than the emission peak wavelength of the second emitter, and an aromatic heterocyclic ligand or an auxiliary ligand of the first emitter include an electron withdrawing group. Accordingly, an organic light-emitting element can be provided in which the HOMO value of a specific luminescent dopant is closer to the HOMO value of another luminescent dopant.
US09954191B2
An electronic or optoelectronic device includes: (1) a semiconductor layer; (2) a pair of electrodes electrically coupled to the semiconductor layer; and (3) a dielectric layer in contact with the semiconductor layer and including a polar elastomer, where the elastomer has a glass transition temperature Tg that is no greater than 25° C.
US09954187B2
Disclosed herein are a compound represented by formula (1) that is capable of producing organic electroluminescence (EL) devices having excellent properties, an organic EL device containing the compound, and an electronic device containing the organic EL device. The organic EL device contains a organic thin film layer between a cathode and an anode, in which the organic thin film layer contains one or more layers and a light emitting layer, and at least one layer of the organic thin film layer contains the compound.
US09954180B2
Novel organic compounds comprising a bicarbazole core are provided. In particular, the compounds has a 3,3′-bicarbazole core substituted at the 9-position with a triazine or pyrimidine. The compounds may be used in organic light emitting devices to provide devices having improved efficiency and improved lifetime.
US09954176B1
Dielectric treatments for carbon nanotube devices are provided. In one aspect, a method for forming a carbon nanotube-based device is provided. The method includes: providing at least one carbon nanotube disposed on a first dielectric; removing contaminants from surfaces of the first dielectric; and depositing a second dielectric onto the first dielectric and at least partially surrounding the at least one carbon nanotube. A carbon nanotube-based device is also provided.
US09954173B2
The invention generally relates to formulations for use in organic semiconductor layers of organic electronic devices, and more specifically in organic field effect transistors, to organic semiconductor layers prepared from such formulations, and to organic electronic devices and organic field effect transistors encompassing such organic semiconductor layers.
US09954172B2
An object is to provide an organic semiconductor element having excellent carrier mobility and heat resistance of a semiconductor active layer, an organic semiconductor composition for obtaining this element, an organic semiconductor film, and a method of manufacturing an organic semiconductor element in which the composition is used, and another object is to provide a compound and an oligomer or a polymer that are suitably used in the organic semiconductor element, the organic semiconductor composition, the organic semiconductor film, and the method of manufacturing an organic semiconductor element.The organic semiconductor element of the present invention includes a compound represented by Formula 1 below in a semiconductor active layer. In Formula 1, X represents a chalcogen atom, p and q each independently represent an integer of 0 to 2, and R1 and R2 each independently represent a halogen atom or a group represented by Formula W below.
US09954171B2
A manufacturing method of an electronic device includes: providing a substrate; forming a source and a drain on the substrate; forming a semiconductor layer on the substrate; forming a first light sensitive material layer on the semiconductor layer; removing a first portion of the first light sensitive material layer by a first exposure and development process and maintaining a second portion of the first light sensitive material layer to serve as a first gate insulation layer; patterning the semiconductor layer to form a channel layer below the first gate insulation layer; forming a second light sensitive material layer on the substrate; removing a third portion of the second light sensitive material layer by a second exposure and development process to expose at least a part of the first gate insulation layer; and forming a first gate on the first gate insulation layer. An electronic device is also provided.
US09954166B1
A memory cell with a composite top electrode is provided. A bottom electrode is disposed over a substrate. A switching dielectric having a variable resistance is disposed over the bottom electrode. A capping layer is disposed over the switching dielectric. A composite top electrode is disposed over and abutting the capping layer. The composite top electrode comprises a tantalum nitride (TaN) layer and a titanium nitride (TiN) film disposed directly on the tantalum nitride layer. By having the disclosed composite top electrode, an interfacial oxidized layer is eliminated or less formed when exposing the composite top electrode for top electrode via formation, thereby improving RC properties between the top electrode and the top electrode via. A method for manufacturing the memory cell is also provided.
US09954165B2
In the examples provided herein, a device is described that has a stack of structure layers including a first structure layer and a second structure layer that are different materials, where the first structure layer is positioned higher in the stack than the second structure layer. The device also has a first sidewall spacer deposited conformally and circumferentially around an upper portion of the stack that includes the first structure layer. Further, the device has a second sidewall spacer deposited conformally and circumferentially around the first sidewall spacer and an additional portion of the stack that includes the second structure layer, where a height of the first sidewall spacer along the stack is different from a height of the second sidewall spacer.
US09954154B2
In at least one embodiment a thermoelectric generator is provided. The thermoelectric generator includes a cap and a thermopile. The cap is coupled to a heat generating device for receiving thermal energy therefrom. The thermopile includes superlattice quantum well materials and an absorber for contacting the cap to receive the thermal energy and to generate an electrical output to one of store the electrical output on a storage device and power a first device with the electrical output in response to the thermal energy.
US09954147B2
An optoelectronic apparatus is disclosed. In an embodiment, the apparatus includes at least one wavelength conversion region which includes at least one dual emitter as wavelength conversion material, wherein the wavelength conversion region converts primary radiation at least in part into secondary radiation, and wherein the dual emitter includes a first electronic base state and a second electronic base state, together with a first electronically excited state and a second electronically excited state which may be reached from the first electronically excited state. The dual emitter further includes emission proceeding from the second electronically excited state into the second base state.
US09954144B2
This disclosure related to surface mount devices, such as light emitting devices, and methods of manufacture thereof, including recessed contact pads with protruding contact bumps. Embodiments according to the present disclosure include a light emitting device, wherein the device comprises at least a contact pad, such that the contact pad is recessed in relation to a surface of the device. Contact bumps are formed in contact with the contact pads, such that the contact bumps protrude beyond the surface and may contact a surface of a submount that the device is meant to be mounted to. Methods of manufacture including methods utilizing virtual wafer structures are also disclosed.
US09954141B2
A process for fabricating an electronic device including a substrate and microwires or nanowires resting on the substrate, the process including successive steps of covering the wires with an insulating layer, covering the insulating layer with an opaque layer, depositing a first photoresist layer over the substrate between the wires, etching the first photoresist layer over a first thickness by photolithography, etching the first photoresist layer remaining after the preceding step over a second thickness by plasma etching, etching the portion of the opaque layer not covered by the first photoresist layer remaining after the preceding step, etching the portion of the insulating layer not covered by the opaque layer, removing the first photoresist layer remaining after the preceding step, and removing the opaque layer.
US09954121B2
Examples of the various techniques introduced here include, but not limited to, a mesa height adjustment approach during shallow trench isolation formation, a transistor via first approach, and a multiple absorption layer approach. As described further below, the techniques introduced herein include a variety of aspects that can individually and/or collectively resolve or mitigate one or more traditional limitations involved with manufacturing PDs and transistors on the same substrate, such as above discussed reliability, performance, and process temperature issues.
US09954117B2
A novel semiconductor device including an oxide semiconductor is provided. In particular, a planar semiconductor device including an oxide semiconductor is provided. A semiconductor device including an oxide semiconductor and having large on-state current is provided. The semiconductor device includes an oxide insulating film, an oxide semiconductor film over the oxide insulating film, a source electrode and a drain electrode in contact with the oxide semiconductor film, a gate insulating film between the source electrode and the drain electrode, and a gate electrode overlapping the oxide semiconductor film with the gate insulating film. The oxide semiconductor film includes a first region overlapped with the gate electrode and a second region not overlapped with the gate electrode, the source electrode, and the drain electrode. The first region and the second region have different impurity element concentrations. The gate electrode, the source electrode, and the drain electrode contain the same metal element.
US09954114B2
The electrical characteristics of a transistor including an oxide semiconductor layer are varied by influence of an insulating film in contact with the oxide semiconductor layer, that is, by an interface state between the oxide semiconductor layer and the insulating film. A first oxide semiconductor layer S1, a second oxide semiconductor layer S2, and a third oxide semiconductor layer S3 are sequentially stacked, so that the oxide semiconductor layer through which carriers flow is separated from the gate insulating film containing silicon. The thickness of the first oxide semiconductor layer S1 is preferably smaller than those of the second oxide semiconductor layer S2 and the third oxide semiconductor layer S3, and is less than or equal to 10 nm, preferably less than or equal to 5 nm.
US09954111B2
Provided is a highly integrated semiconductor device, a semiconductor device with large storage capacity with respect to an area occupied by a capacitor, a semiconductor device capable of high-speed writing, a semiconductor device capable of high-speed reading, a semiconductor device with low power consumption, or a highly reliable semiconductor device. The semiconductor device includes a first transistor, a second transistor, and a capacitor. A conductor penetrates and connects the first transistor, the capacitor, and the second transistor. An insulator is provided on a side surface of the conductor that penetrates the capacitor.
US09954106B2
A method of forming a semiconductor structure in which a III-V compound semiconductor channel fin portion is formed on a dielectric material is provided. The method includes forming a III-V material stack on a surface of a bulk semiconductor substrate. Patterning of the III-V material stack is then employed to provide a pre-fin structure that is located between, and in contact with, pre-pad structures. The pre-pad structures are used as an anchoring agent when a III-V compound semiconductor channel layer portion of the III-V material stack and of the pre-fin structure is suspended by removing a topmost III-V compound semiconductor buffer layer portion of the material stack from the pre-fin structure. A dielectric material is then formed within the gap provided by the suspending step and thereafter a fin cut process is employed.
US09954105B2
A method includes providing a semiconductor substrate having first and second regions that are doped with first and second dopants respectively. The first and second dopants are of opposite types. The method further includes epitaxially growing a first semiconductor layer that is doped with a third dopant. The first and third dopants are of opposite types. The method further includes depositing a dielectric hard mask (HM) layer over the first semiconductor layer; patterning the dielectric HM layer to have an opening over the first region; extending the opening towards the semiconductor substrate; and epitaxially growing a second semiconductor layer in the opening. The second semiconductor layer is doped with a fourth dopant. The first and fourth dopants are of a same type. The method further includes removing the dielectric HM layer; and performing a first CMP process to planarize both the first and second semiconductor layers.
US09954083B2
A method of introducing strain in a channel region of a FinFET device includes forming a fin structure on a substrate, the fin structure having a lower portion comprising a sacrificial layer and an upper portion comprising a strained semiconductor layer; and removing a portion of the sacrificial layer corresponding to a channel region of the FinFET device so as to release the upper portion of the fin structure from the substrate in the channel region.
US09954081B2
A substrate is patterned to form trenches and a semiconductor fin between the trenches. Insulators are formed in the trenches and a first dielectric layer is formed to cover the semiconductor fin and the insulators. A dummy gate strip is formed on the first dielectric layer. Spacers are formed on sidewalls of the dummy gate strip. The dummy gate strip and the first dielectric layer underneath are removed until sidewalls of the spacers, a portion of the semiconductor fin and portions of the insulators are exposed. A second dielectric layer is conformally formed to cover the sidewalls of the spacers, the exposed portion of the semiconductor fin and the exposed portions of the insulators, wherein a thickness of the first dielectric layer is smaller than a thickness of the second dielectric layer. A gate is formed on the second dielectric layer and between the spacers.
US09954080B2
A 3D integrated circuit device, including: a first transistor; a second transistor; and a third transistor, where the third transistor is overlaying the second transistor and the second transistor is overlaying the first transistor, where the first transistor controls the supply of a ground or a power signal to the third transistor, and where the first transistor, the second transistor and the third transistor are aligned to each other with less than 100 nm misalignment.
US09954078B2
A method of manufacturing a super junction MOSFET, which includes a parallel pn layer including a plurality of pn junctions and in which an n-type drift region and a p-type partition region interposed between the pn junctions are alternately arranged and contact each other, a MOS gate structure on the surface of the parallel pn layer, and an n-type buffer layer in contact with an opposite main surface. The impurity concentration of the buffer layer is equal to or less than that of the n-type drift region. At least one of the p-type partition regions in the parallel pn layer is replaced with an n− region with a lower impurity concentration than the n-type drift region.
US09954066B2
Provided are semiconductor devices and fabricating methods thereof. The semiconductor device includes a field insulating layer formed in a substrate, an interlayer dielectric layer formed on the field insulating layer and including a trench exposing at least a portion of the field insulating layer, a deposition insulating layer formed in the trench to be disposed on the field insulating layer, a gate insulating layer formed the trench to be disposed on the deposition insulating layer, and a metal gate formed the trench on the gate insulating layer.
US09954065B2
In accordance with a method of forming a semiconductor device, an auxiliary structure is formed at a first surface of a silicon semiconductor body. A semiconductor layer is formed on the semiconductor body at the first surface. Semiconductor device elements are formed at the first surface. The semiconductor body is then removed from a second surface opposite to the first surface at least up to an edge of the auxiliary structure oriented to the second surface.
US09954059B1
A semiconductor wafer is provided with a thick region extending along its outer circumferential surface and being greater in thickness than its central region. A main surface of the wafer includes a slope surface located between the central region and the thick region. The slope surface has an inner circumferential edge and an outer circumferential edge, and slopes such that the thickness of the wafer increases from the inner circumferential edges to the outer circumferential edge. The slope surface includes an inner circumferential portion including the inner circumferential edge, an outer circumferential portion including the outer circumferential edge and an intermediate portion located between the inner and the outer circumferential portions. At least one of slope angles of the inner and the outer circumferential portions is smaller than a slope angle of the intermediate portion.
US09954055B2
A semiconductor device includes a layer having first and second surfaces and a first type first region, a second type second region in the layer between the first region and first surface, a first type third region in the layer between the second region and first surface, first and second gate electrodes, wherein the second region is between the first and second gate electrodes, a first field plate electrode between the second surface and first gate electrode, a second field plate electrode between the second surface and second gate electrode, a first film, at least a portion between the first field plate electrode and first region, a second film at least a portion between the second field plate electrode and first region, and a second type fourth region in the first region between the first and second films. A portion of the first region is between second and fourth regions.
US09954053B2
A method of manufacturing a semiconductor device, including implanting hydrogen atoms from a second principal surface of a semiconductor substrate, forming a plurality of second semiconductor layers that each have a carrier concentration higher than that of the first semiconductor layer and that have carrier concentration peak values at different depths from the second principal surface of the semiconductor substrate, applying a heat treatment process to promote generation of donors from the hydrogen atoms, implanting an impurity from the second principal surface of the semiconductor substrate, forming a third semiconductor layer in the semiconductor substrate at the second principal surface thereof, and applying another heat treatment process to locally heat the semiconductor substrate, so as to reduce the carrier concentration at an interface between the third semiconductor layer and the second semiconductor layer adjacent to the third semiconductor layer.
US09954051B2
Methods of processing a substrate include: providing a substrate having a polymer dielectric layer, a metal pad formed within the polymer dielectric layer and a first metal layer formed atop the polymer dielectric layer; depositing a polymer layer atop the substrate; patterning the polymer layer to form a plurality of openings, wherein the plurality of openings comprises a first opening formed proximate the metal pad; depositing a first barrier layer atop the polymer layer; depositing a dielectric layer atop the first barrier layer; etching the dielectric layer and the first barrier layer from within the first opening and a field region of the polymer layer; depositing a second barrier layer atop the substrate; depositing a second metal layer atop the substrate wherein the second metal layer fills the plurality of openings; and etching the second metal layer from a portion of the field region of the polymer layer.
US09954044B2
A display apparatus includes a first substrate including a channel-forming area, a second substrate facing the first substrate, a thin-film transistor disposed on the first substrate, a pixel electrode electrically connected to the thin-film transistor, a gate line disposed on the first substrate and electrically connected to the thin-film transistor, a data line electrically connected to the thin-film transistor and divided into at least two portions such that the channel-forming area is disposed between the two portions of the data line, and a connection portion electrically connecting the two portions of the data line to each other, in which the thin-film transistor includes a gate electrode branched from the gate line and overlapping the channel-forming area, a semiconductor pattern overlapping the gate electrode and contacting the two portions of the data line so that the channel-forming area is disposed in the semiconductor pattern, and a drain electrode electrically connected to the pixel electrode and overlapping the semiconductor pattern.
US09954038B2
An organic light-emitting device according to an embodiment of the present disclosure includes a first electrode, a second electrode opposite to the first electrode, a first light-emitter on the first electrode to emit first light of a first wavelength range, a second light-emitter between the first light-emitter and the second electrode, to emit second light of a second wavelength range, and a charge generation layer which includes a metal compound having a perovskite structure, is between the first light-emitter and the second light-emitter, and is to generate charges to provide to each of the first light-emitter and the second light-emitter.
US09954033B2
A method for fabricating at least a portion of a complementary circuit, such as a complementary inverter circuit, includes fabricating a first sheet and a second sheet. Each of the sheets includes metal layers, a dielectric layer, and a semiconductor channel layer, configured so as to form a plurality of transistors of a respective polarity (i.e., P-type for one sheet, N-type for the other). The method also includes placing a layer of conductive material, such as anisotropic conducting glue (ACG) or anisotropic conducting foil (ACF), on the first sheet, and bonding at least a portion of the second sheet to the first sheet such that the conductive material is disposed between and in contact with the top-most metal layers of the first and second sheets. Separately fabricating the two sheets of different polarity may improve yields and/or decrease costs as compared to fabricating both polarities on a single substrate.
US09954031B2
A semiconductor device including a semiconductor substrate with a first surface and a second surface facing each other, the semiconductor substrate having an element region in which a transistor is provided on the first surface, and a separation region in which an element separating layer surrounding the element region is provided; a contact plug extending from the first surface to the second surface, in the element region of the semiconductor substrate; and an insulating film covering a periphery of the contact plug.
US09954030B2
A semiconductor apparatus includes a substrate, a first insulating layer on a logic region and a memory region of the substrate, a second insulating layer on the first insulating layer, a base insulating layer between the first insulating layer and second insulating layer over the logic region and the memory region, first interconnection structures passing the first insulating layer, second interconnection structures passing through the second insulating layer, a base interconnection structure passing through the base insulating layer over the logic region, and a variable resistance structure in the base insulating layer over the memory region. The variable resistance structure includes a lower electrode, a magnetoresistive device, and an upper electrode, which are sequentially stacked. The lower electrode and the upper electrode are electrically connected to one of the first interconnection structures and one of the second interconnection structures, respectively, over the memory region.
US09954029B2
According to one embodiment, a resistance change memory includes a semiconductor layer having a first surface in a first direction and a second surface in a second direction crossing the first direction, extending in a third direction crossing the first and second directions, and having first and second portions, a gate electrode covering the first and second surfaces between the first and second portions, a first conductive line connected to the first portion, a resistance change element having first and second terminals, the first terminal connected to the second portion, a second conductive line connected to the second terminal, and a third conductive line connected to the gate electrode.
US09954018B2
A solid-state image pickup unit includes: a substrate made of a first semiconductor; a substrate made of a first semiconductor; a photoelectric conversion device provided on the substrate and including a first electrode, a photoelectric conversion layer, and a second electrode in order from the substrate; and a plurality of field-effect transistors configured to perform signal reading from the photoelectric conversion device. The plurality of transistors include a transfer transistor and an amplification transistor, the transfer transistor includes an active layer containing a second semiconductor with a larger band gap than that of the first semiconductor, and one terminal of a source and a drain of the transfer transistor also serves the first electrode or the second electrode of the photoelectric conversion device, and the other terminal of the transfer transistor is connected to a gate of the amplification transistor.
US09954014B2
A thin film transistor substrate having two different types of thin film transistors on the same substrate, and a display using the same are discussed. The thin film transistor substrate can include a substrate, a first thin film transistor (TFT), a second TFT, a first storage capacitor electrode, an oxide layer, a nitride layer, a second storage capacitor electrode, a planar layer and a pixel electrode. The first TFT is disposed in a first area, the second TFT is disposed in a second area, and the first storage capacitor electrode is disposed in a third area on the substrate respectively. The oxide layer covers the first and second TFTs, and exposes the first storage capacitor electrode. The nitride layer is disposed on the oxide layer and covers the first storage capacitor electrode. The second storage capacitor electrode overlaps with the first storage capacitor electrode on the nitride layer. The planar layer covers the first and second TFTs, and the second storage capacitor electrode. The pixel electrode is disposed on the planar layer.
US09954005B2
A semiconductor device includes a pixel portion having a first thin film transistor and a driver circuit having a second thin film transistor. Each of the first thin film transistor and the second thin film transistor includes a gate electrode layer, a gate insulating layer, a semiconductor layer, a source electrode layer, and a drain electrode layer. Each of the layers of the first thin film transistor has a light-transmitting property. Materials of the gate electrode layer, the source electrode layer and the drain electrode layer of the first thin film transistor are different from those of the second transistor, and each of the resistances of the second thin film transistor is lower than that of the first thin film transistor.
US09953998B2
A method for manufacturing a semiconductor memory device includes forming a first insulating layer on a conductive layer; forming a second insulating layer on the first insulating layer, the second insulating layer including a first layer and a second layer having nitrogen and hydrogen bonds with higher density than a density thereof in the first layer; forming a third insulating layer on the second insulating layer; forming a semiconductor layer extending through the first insulating layer and the second insulating layer in a direction toward the third insulating layer from the conductive layer; selectively removing the second insulating layer to form a space, the first insulating layer being exposed in the space; forming the fourth insulating layer between the conductive layer and the first insulating layer, the fourth insulating layer being formed by thermally oxidizing the conductive layer through the first insulating layer in the space.
US09953992B1
A three-dimensional memory array device can include mid-plane terrace regions between a pair of memory array regions. The electrically conductive layers of the three-dimensional memory array device continuously extend between the pair of memory array regions through a connection region, which is provided adjacent to the mid-plane terrace regions. Contact via structures contacting the electrically conductive layers can be provided in the mid-plane terrace regions, and through-memory-level via structures that extend through the alternating stack and connected to underlying lower metal interconnect structures and semiconductor devices can be provided through the mid-plane terrace region and/or through the connection region. Upper metal interconnect structures can connect the contact via structures and the through-memory-level via structures.
US09953989B2
A method for forming an antifuse on a substrate is provided, which comprises: forming a first conductive material on the substrate; placing the first conductive material in an electrolytic solution; performing anodic oxidation on the first conductive material to form a nanowire made of the first conductive material and surrounded by a first dielectric material formed during the anodic oxidation and to form the antifuse on the nanowire; and forming a second conductive material on the antifuse to sandwich the antifuse between the first conductive material and the second conductive material.
US09953987B2
A semiconductor device, including: a semiconductor substrate having a first well region; an insulating layer formed on a first portion of the semiconductor substrate, and contacted with the first well region; a semiconductor layer formed on the insulating layer; an element isolation region reaching to an inside of the first well region, in a cross-sectional view; a first gate electrode layer formed on a first portion of the semiconductor layer via a first gate insulating film; a second gate electrode layer formed on both a second portion of the semiconductor layer via a second gate insulating film and a first portion of the element isolation region; an interlayer insulating film covering the first gate electrode layer, the second gate electrode layer and a second portion of the element isolation region; a first plug conductor layer formed in the interlayer insulating film.
US09953976B2
After forming a gate stack straddling a portion of each semiconductor fin of a plurality of semiconductor fins located over a substrate, a gate liner is formed on sidewalls of a lower portion of the gate stack that contacts the plurality of semiconductor fins and a gate spacer having a width greater than a width of the gate liner is formed on sidewalls of an upper portion of the gate stack that is located above the plurality of semiconductor fins. The width of the gate spacer thus is not limited by the fin pitch, and can be optimized to improve the device performance.
US09953973B1
An electrical device including a vertical transistor device connected to a vertical diode. The vertical diode connected transistor device including a vertically orientated channel. The vertical diode connected transistor device also includes a first diode source/drain region provided by an electrically conductive surface region of a substrate at a first end of the diode vertically orientated channel, and a second diode source/drain region present at a second end of the vertically orientated channel. The vertical diode also includes a diode gate structure in electrical contact with the first diode source/drain region.
US09953972B2
An Integrated Circuit device, including: first transistors and second transistors, where the first transistors and the second transistors each include a single crystal channel, where at least one of the second transistors overlays at least one of the first transistors with less than 1 micron distance apart, and where at least one of the second transistors is a dopant segregated schottky barrier transistor.
US09953971B2
An insulated gate bipolar transistor (IGBT) includes a gate trench, an emitter trench, and an electrically insulative layer coupled to the emitter trench and the gate trench and electrically isolating the gate trench from an electrically conductive layer. A contact opening in the electrically insulative layer extends into the emitter trench and the electrically conductive layer electrically couples with the emitter trench therethrough. A P surface doped (PSD) region and an N surface doped (NSD) region are each located between the electrically conductive layer and a plurality of semiconductor layers of the IGBT and between the gate trench and the emitter trench. The electrically conductive layer electrically couples to the plurality of semiconductor layers through the PSD region and/or the NSD region.
US09953968B2
An integrated circuit having an ESD protection structure is described. One embodiment includes a circuit section interconnected with a first terminal and with a second terminal and being operable at voltage differences between the first terminal and second terminal of greater than +10 V and less than −10 V. The integrated circuit additionally includes an ESD protection structure operable to protect the circuit section against electrostatic discharge between the first terminal and the second terminal. The ESD protection structure is operable with voltage differences between the first and second terminals of greater than +10 V and less than −10 V without triggering. The ESD protection structure is electrically and optically coupled to a photon source such that photons emitted by the photon source upon ESD pulse loading are absorbable in the ESD protection structure and an avalanche breakdown is initiatable by electron-hole pairs generated by the absorbed photons.
US09953960B2
A multi-chip package structure includes a first chip, at least one blocking structure, a plurality of first conductive bumps, a second chip, a plurality of second conductive bumps and an underfill. The first chip has a chip connecting zone, a plurality of first inner pads in the chip connecting zone and a plurality of first outer pads outside of the chip connecting zone. The blocking structure is disposed between the first inner pads and the first outer pads and surrounds the first inner pads. The first conductive bumps are disposed on the first outer pads. The second chip is flipped on the chip connecting zone and has a plurality of second pads. The second conductive bumps are disposed between the first inner pads and the second pads. The underfill is disposed between the first chip and the second chip so as to cover the second conductive bumps.
US09953957B2
A device with thermal control is presented. In some embodiments, the device includes a plurality of die positioned in a stack, each die including a chip, interconnects through a thickness of the chip, metal features of electrically conductive composition connected to the interconnects on a bottom side of the chip, and adhesive or underfill layer on the bottom side of the chip. At least one thermally conducting layer, which can be a pyrolytic graphite layer, a layer formed of carbon nanotubes, or a graphene layer, is coupled between a top side of one of the plurality of die and a bottom side of an adjoining die in the stack. A heat sink can be coupled to the thermally conducting layer.
US09953956B2
A package substrate is provided. The package substrate includes a base layer having a first surface and a second surface opposite to the first surface, a plurality of through holes penetrating the base layer, a first metal layer disposed on the first surface, and a second metal layer disposed on the second surface. The first metal layer includes a closed-loop trench. A part of the second metal layer is electrically connected to the first metal layer via the through holes. The through holes are positioned at an inner part the closed-loop trench.
US09953952B2
A semiconductor device includes a carrier, a chip attached to the carrier, a sealant vapor deposited over the chip and the carrier, and encapsulation material deposited over the sealed chip and the sealed carrier.
US09953951B2
Some embodiments include a method. The method can comprise: providing a carrier substrate; providing an adhesion modification layer over the carrier substrate; providing a device substrate; and coupling the device substrate and the carrier substrate together, the adhesion modification layer being located between the device substrate and the carrier substrate when the device substrate and the carrier substrate are coupled together. In these embodiments, the adhesion modification layer can be configured so that the device substrate couples indirectly with the carrier substrate by way of the adhesion modification layer with a first bonding force that is greater than a second bonding force by which the device substrate couples with the carrier substrate absent the adhesion modification layer. Other embodiments of related methods and devices are also disclosed.
US09953938B2
An electromagnetic coupler assembly includes a handle wafer having an oxide layer disposed on a first surface thereof. A layer of active semiconductor is disposed on the oxide layer and includes a voltage terminal to receive a supply voltage. A layer of dielectric material is disposed on the layer of active semiconductor. A main transmission line is disposed on the layer of dielectric material. A coupled transmission line is disposed on the layer of active semiconductor and is one of inductively coupled to the main transmission line and capacitively coupled to the main transmission line. At least a portion of one of the main transmission line and the coupled transmission line is disposed directly above at least a portion of the layer of active semiconductor.
US09953935B2
Disclosed are chip packaging structures for high speed chip to chip and chip to carrier communications and methods of making such structures. The chip packaging structures do not require an interposer containing through silicon vias and/or provide structures having reduced warping.
US09953933B1
A semiconductor package includes a substrate, a die, an insulating die attach film, a dummy die, a conductive layer, and an electrically conductive molding compound or encapsulant. The first surface of the substrate includes a plurality of internal leads, and the second surface of the substrate includes a plurality of external electrically conductive pads and an electrically conductive ground terminal. A non-conductive flow over wire die attach film is placed to surround and encase the die. The dummy die overlies the die and a conductive layer overlies the dummy die. The electrically conductive molding compound is formed to encase the various components of the semiconductor device. The electrically conductive molding compound is electrically coupled to the electrically conductive ground terminal and the conductive layer forming an EMI shield for the die in the package.
US09953928B2
Semiconductor devices including empty spaces and methods of forming the semiconductor devices are provided. The semiconductor devices may include first and second line structures extending in a direction on a substrate, an insulating isolation pattern between the first and second line structures and a conductive structure between the first and second line structures and next to the insulating isolation pattern along the direction. The semiconductor devices may also include an empty space including a first portion between the first line structure and the conductive structure and a second portion between the first line structure and the insulating isolation pattern. The first portion of the empty space may have a height different from a height of the second portion of the empty space.
US09953921B2
A semiconductor device may include a first metal line; a second metal line; a first insulating layer formed between the first metal line and the second metal line; a first driving unit coupled to the first metal line, the first driving unit being suitable for driving the first metal line in response to first data; and a second driving unit coupled to the second metal line, the second driving unit being suitable for driving the second metal line in response to second data obtained by inverting and delaying the first data.
US09953917B1
An electronics package includes an insulating substrate, a semiconductor device having a top surface coupled to a first side of the insulating substrate, and a pass-through structure coupled to the first side of the insulating substrate. The pass-through structure includes an insulating core, a resistor disposed proximate a top surface of the insulating core, and at least one through-hole structure forming at least one conductive pathway through a thickness of the insulating core. A patterned metallization layer is formed on a second side of the insulating substrate. The patterned metallization layer is electrically coupled to at least one first conductive pad of the semiconductor device and electrically couples at least one second conductive pad of the semiconductor device to a through-hole structure of the at least one through-hole structure through the resistor.
US09953910B2
An electronic component includes a base insulative layer having first and second surfaces; an electronic device having first and second surfaces; at least one I/O contact located on the first surface of the electronic device; an adhesive layer disposed between the first surface of the electronic device and the second surface of the base insulative layer; a first metal layer disposed on the I/O contact; and a removable layer disposed between the first surface of the electronic device and the second surface of the base insulative layer, and located adjacent to the first metal layer. The base insulative layer secures to the electronic device through the first metal layer and removable layer. The first metal layer and removable layer can release the base insulative layer from the electronic device when the first metal layer and removable layer are exposed to a temperature higher than their softening points or melting points.
US09953907B2
A method of forming a PoP device comprises placing an adhesive layer on a carrier substrate, coupling a plurality of chip packages to the adhesive layer on the carrier substrate, placing a bonding layer on the chip packages, and coupling a plurality of chips to the bonding layer on the chip packages. The method further comprises injecting a molding compound to encapsulate the chip packages and the chips on the carrier substrate, grinding the molding compound to expose a plurality of connecting elements of the chips and a plurality of second connecting elements of the chip packages, forming a redistribution layer (RDL) on the molding compound and the exposed connecting elements and second connecting elements, forming a ball grid array (BGA) on the RDL, and de-bonding the carrier substrate.
US09953903B2
Consistent with an example embodiment, there is a method for preparing an integrated circuit (IC) device having enhanced heat dissipation. The method comprises providing a lead frame array, of a first thickness, with a plurality of die placement areas each die placement area with bond pad landings, the bond bad landings situated about a die placement area on one or multiple sides, the bond pad landings having upper surfaces and opposite lower surfaces, placing a heat sink assembly of a second thickness, having at least two mounting tabs of the first thickness, in each die placement area and attaching the at least two mounting tabs onto corresponding bond pad landings serving as anchor pads, die bonding a device die on the heat sink device assembly, conductively bonding device die bond pads to corresponding bond pad landings, and encapsulating the wire bonded device die, heat sink assembly and lead frame array in a molding compound.
US09953894B2
A semiconductor device including: a semiconductor element, a substrate having a first surface on which the semiconductor element is provided, and a second surface located opposite the first surface, a metal species provided on the second surface, and a plated metal portion provided at least in part on the second surface on the metal species. The semiconductor device further includes a first region where the plated metal portion is provided and a second region where the plated metal portion is not provided are alternately arranged at a peripheral portion of the second surface.
US09953891B2
A method includes coating a passivation layer overlying a semiconductor substrate and forming an interconnect layer overlying the passivation layer. The interconnect layer includes a line region and a landing pad region. The method further includes forming a metallic layer including tin on a surface of the interconnect layer using an immersion process, forming a protective layer on the metallic layer, and exposing a portion of the metallic layer on the landing pad region of the interconnect layer through the protective layer.
US09953890B2
A semiconductor device includes an insulating substrate on which semiconductor elements are mounted and a surrounding case in which the insulating substrate is housed. Two terminal conductors, both ends of each of which are fixed in sidewalls of the surrounding case, are provided between the sidewalls, and connection terminals protruding toward the insulating substrate side are provided on the respective terminal conductors. The connection terminals and a conductive foil on the insulating substrate are soldered together. Insulating blocks for keeping the distance between the adjacent terminal conductors at a fixed distance or greater are provided in the vicinity of the central portion of the terminal conductor. The insulating blocks suppress the terminal conductor being deformed by being thermally expanded when soldering. Because of this, it is possible to stabilize solderability, and it is possible to prevent an occurrence of defective connection.
US09953878B2
A method of forming a semiconductor device is provided. The method includes forming a recess in a substrate and forming a first dielectric layer in the recess. A portion of the first dielectric layer is removed. A second dielectric layer is formed over the first dielectric layer. A gate structure is formed over the second dielectric layer.
US09953872B2
Embodiments of the present invention provide a semiconductor structure having a strain relaxed buffer, and method of fabrication. A strain relaxed buffer is disposed on a semiconductor substrate. A silicon region and silicon germanium region are disposed adjacent to each other on the strain relaxed buffer. An additional region of silicon or silicon germanium provides quantum well isolation.
US09953871B2
A laser beam is applied to the front side of a wafer along division lines, to form grooves having a depth corresponding to a finished thickness of device chips. Molding resin is laid on the front side of the wafer and embedded in the grooves. A protective member is attached to a front side of the molding resin, and a back side of the wafer is ground to expose the grooves and to expose the molding resin embedded in the grooves on the back side of the wafer. The wafer is divided along the grooves by a cutting blade having a thickness smaller than the width of the grooves, a central portion in a width direction of the molding resin being exposed along the grooves, thereby dividing the wafer into individual device chips each having a periphery surrounded with the molding resin.
US09953870B2
A 3D integrated circuit device, including: a first transistor; a second transistor; and a third transistor, where the third transistor is overlaying the second transistor and the third transistor is controlled by a third control line, where the second transistor is overlaying the first transistor and the second transistor is controlled by a second control line, where the first transistor is part of a control circuit controlling the second control line and the third control line, and where the second transistor and the third transistor are self-aligned.
US09953862B2
A plasma processing method performs an etching process of supplying a fluorine-containing gas into a plasma processing space and etching a target substrate, in which a silicon oxide film or a silicon nitride film is formed on a surface of a metal silicide film, with plasma of the fluorine-containing gas (process S101). Then, the plasma processing method performs a reduction process of supplying a hydrogen-containing gas into the plasma processing space and reducing, with plasma of the hydrogen-containing gas, a metal-containing material deposited on a member, of which a surface is arranged to face the plasma processing space, after the etching process (process S102). Thereafter, the plasma processing method performs a removal process of supplying an oxygen-containing gas into the plasma processing space and removing metal, which is obtained by reducing the metal-containing material in the reduction process, with plasma of the oxygen-containing gas (process S103).
US09953860B2
A method of manufacturing an SOI wafer, including (a) forming a thermal oxide film on an SOI layer of an SOI wafer by a heat treatment under an oxidizing gas atmosphere, (b) measuring thickness of the SOI layer after forming the thermal oxide film, (c) performing a batch cleaning, wherein an etching amount of SOI layer is adjusted depending on thickness of the SOI layer measured in step (b) such that thickness of the SOI layer is adjusted to be thicker than a target value after etching, (d) measuring thickness of the SOI layer after batch cleaning, (e) performing a single-wafer cleaning, wherein an etching amount of the SOI layer is adjusted depending on thickness of the SOI layer measured in step (d) such that thickness of the SOI layer is adjusted to be the target value after etching, and removing the thermal oxide film formed in step (a) before or after step (b).
US09953848B2
A substrate liquid processing apparatus of the present disclosure supplies a plurality of processing liquids from a processing liquid supplying unit in a switching manner to a substrate held on a substrate holding unit. An elevatable inner cup surrounds the substrate holding unit laterally and forms a first drain path that drains the first processing liquid. An outer cup surrounds the inner cup and forms a second drain path that drains the second processing liquid. A cover covers the outside of the outer cup, includes an eaves portion that extends inwardly from an upper side, and forms an exhaust path between the cover and the outer cup. The exhaust path is connected to the first drain path and the second drain path above inlets of the first drain path and the second drain path.
US09953842B2
An embodiment of a method of forming a portion of a memory array includes forming a conductor with a concentration of germanium that decreases with an increasing thickness of the conductor, removing a portion of the conductor at a rate governed by the concentration of germanium to form a tapered first opening through the conductor, removing a sacrificial material below the conductor to form a second opening contiguous with the tapered first opening, and forming a semiconductor in the contiguous first and second openings, wherein a portion of the semiconductor pinches off within the first opening adjacent an upper surface of the conductor before the contiguous first and second openings are completely filled with the semiconductor.
US09953833B2
Provided is a method for creating a mask blank that includes a capping layer and a shifter layer. The capping layer is optically compatible and process compatible with the shifter layer. The method may include providing a cleaned and polished mask substrate to a deposition tool and depositing, within the deposition tool, a shifter layer over a cleaned and polished mask substrate. The shifter layer may include each material of a set of materials in a first proportion. The method may also include depositing an additional layer over the shifter layer, the additional layer providing a capping layer over the shifter layer. The capping layer includes the materials in a second proportion unequal to the first proportion. The capping layer includes molybdenum, silicon, and nitride in a proportion that aids in detection by a residual gas analyzer. Also provided is also a mask blank structure incorporating the compatible capping layer.
US09953816B2
An ion detector for a Time of Flight mass spectrometer is disclosed comprising a single Microchannel Plate which is arranged to receive ions and output electrons. The electrons are directed onto an array of photodiodes which directly detects the electrons. The output from each photodiode is connected to a separate Time to Digital Converter provided on an ASIC.
US09953803B2
A calibration method for calibrating the position error in the point of interest induced from the stage of the defect inspection tool is achieved by controlling the deflectors directly. The position error in the point of interest is obtained from the design layout database.
US09953796B2
A semiconductor power handling device, includes a cathode pillar, a gate surrounding the cathode pillar, and an anode spaced from the cathode by a nano-vacuum gap. An array of semiconductor power handling devices, each comprising a cathode pillar, a gate surrounding the cathode pillar, and an anode spaced from the cathode pillar by a nano-vacuum gap. The semiconductor power handling devices can be arranged as rows and columns and can be interconnected to meet the requirements of various applications. The array of power handling devices can be fabricated on a single substrate.
US09953783B2
Embodiments disclose a fuse comprising a one power lead, an explosion chamber and an isolating chamber, wherein the fuse is designed such that a power lead can be broken into at least two parts by an explosion triggered in an explosion chamber. The two parts are separated from each other in an associated isolating chamber by a respective electrically insulating partition. Embodiments disclose a method comprising a power lead, an explosion chamber and an isolating chamber, wherein an explosion is triggered in the explosion chamber so that the power lead is broken into at least two parts and bent into the isolating chamber such that at least two parts are separated from one another by an electrically insulating partition. The present disclosure can be applied to pyrotechnic fuses for vehicles and to high-voltage fuses.
US09953781B2
A resettable sensor assembly includes a housing having a longitudinal axis and defining a cavity therein. The assembly includes a divider disposed within the cavity and in contact with the housing, at least one electrical contact disposed within the cavity and extending through the divider, and a pin reversibly translatable within the cavity along the axis. The assembly includes at least one actuator element disposed within the cavity and abutting the housing. The element is configured for translating the pin along the axis between a first position wherein the pin contacts the electrical contact and a second position wherein the pin is spaced apart from the electrical contact. The actuator element is formed from a shape memory alloy that is transitionable between an austenite crystallographic phase and a martensite crystallographic phase in response to a thermal activation signal to thereby translate the pin between the first and second positions.
US09953778B2
A gas circuit breaker includes a breaking unit tank incorporating a fixed electrode and a movable electrode, a spring operation device including a breaking spring and a closing spring and configured to move the movable electrode, and a mechanism unit configured to couple the movable electrode side and the spring operation device side and transmit power received from the spring operation device to the movable electrode. The spring operation device is supported by a frame. The frame is fixed to a rear plate provided in a mechanism unit frame of the mechanism unit. A breaking spring case and a closing spring case of the spring operation device are fixed to pedestals via a plate member 38 and a support section 7.
US09953774B2
An electronic device is disclosed for controlling a high-voltage power source with multiple low-voltage switches. The electronic device includes a low-voltage DC power supply that allows for low-voltage wiring and components to be used to control the high-voltage power source using multiple low-voltage switches. The electronic device includes a single pulse generator that generates a pulse signal upon activation of any one of the multiple switches. The pulse signal activates a bistable circuit controller that is coupled the a high-voltage electronic switch to control high-voltage power to the load.
US09953765B2
A laminated ceramic electronic component mounting structure includes a laminated ceramic electronic component including a ceramic body, first and second inner electrodes in the ceramic body including opposed portions including at least portions of which are opposed to each other in a thickness direction of the ceramic body, a first terminal electrode electrically connected to the first inner electrode, and a second terminal electrode electrically connected to the second inner electrode; and a circuit board including first and second electrode lands electrically connected to the first and second terminal electrodes and on which the laminated ceramic electronic component is mounted, wherein widths of the first and second electrode lands are smaller than widths of the first and second inner electrodes at the opposed portions.
US09953764B2
In a solenoid magnet assembly, and a method for manufacture thereof, the magnet assembly includes a number of concentrically aligned coils, each including a winding impregnated with a resin. Each coil is mechanically restrained so as to hold the coils in fixed relative positions relative to each other when forming the magnet assembly. The mechanical restraint can be formed by annular support sections bonded to the respective coils, lugs bonded to the respective coils, or by lugs that are at least partially embedded in a crust formed on a radially outer surface of the respective windings.
US09953763B2
A wireless power transfer system includes a plurality of power sources and at least one power receiver, in which power transfer from the power sources to the power receiver is performed in wireless by using magnetic field resonance or electric field resonance. In the system, one of the plurality of power sources is designated as a master power source and the other one or more power sources are designated as slave power sources. In addition, the master power source controls the plurality of power sources and the at least one power receiver to perform the power transfer. This allows the system to perform the power transfer in an optimum state.
US09953749B2
A resistor element includes a base substrate having first and second surfaces opposing each other; a resistor layer disposed on the first surface of the base substrate; first and second terminals disposed on opposing end portions of the base substrate, respectively, and electrically connected to opposing sides of the resistor layer, respectively; a third terminal disposed between the first terminal and the second terminal on the second surface of the base substrate and spaced apart from the first terminal and the second terminal; and electrostatic discharge (ESD)-preventing members connecting the first terminal and the third terminal to each other and connecting the second terminal and the third terminal to each other.
US09953744B2
Electrical insulating paper according to an embodiment of the present invention is used while being immersed in electrical insulating oil, and includes a paper base material mainly containing cellulose, an adsorption layer formed on an entire surface of the paper base material by adsorption, and a moisture barrier layer formed by being chemically bonded to the adsorption layer. The moisture barrier layer includes an amphipathic molecule containing both a hydrophobic hydrocarbon group and a hydrophilic functional group in one molecule. The amphipathic molecule is chemically bonded to the adsorption layer via the hydrophilic functional group. The hydrophobic hydrocarbon group covers the surface of the paper base material.
US09953739B2
The composition described herein for the prevention of corrosion comprises: sacrificial metal particles more noble than a metal substrate to which the composition contacts; carbonaceous material that can form electrical contact between the sacrificial metal particles; and means for providing an anticorrosion coating material for the metal substrate. The composition can form a coating on a metal substrate surface. A method for applying the composition for the prevention of corrosion is also described herein.
US09953737B2
An electrical wire comprises a central Aluminum wire, wherein the central Aluminum wire is surrounded by at least one Copper wire and the aluminum wire and the copper wire are uncoated such that the Copper wire is in direct contact with the central Aluminum wire. 3-23% by volume of the electrical wire is made of Aluminum and the rest is made of Copper. At least one of the central wire and the surrounding wire has a purity of at least 95% to provide a high degree of contact between Aluminum and Copper.
US09953728B2
Examples include a resistive random access memory (RRAM) array to support a redundant column. Some examples include an RRAM cell at a cross point of a column line and a row line of the RRAM array. A first column line may be coupled to a first input of a first current-steering multiplexer and the first current-steering multiplexer may have an output coupled to a first current sense amplifier and a select input coupled to a first column select signal. A second column line may be coupled to a second input of the first current-steering multiplexer and coupled to a first input of a second current-steering multiplexer. The second current-steering multiplexer may have an output coupled to a second current sense amplifier and a select input coupled to a second column select signal. A third column line may be coupled to a second input of the second current-steering multiplexer.
US09953724B2
Memory devices and methods are described that include a stack of memory dies and a logic die. Method and devices described include those that provide for repartitioning the stack of memory dies and storing the new partitions in a memory map. Repartitioning in selected configurations allows portions of memory to be removed from use without affecting the rest of the memory device. Additional devices, systems, and methods are disclosed.
US09953711B2
Methods of operating a memory include applying a first voltage level to a first semiconductor material of a first conductivity type forming a channel region for a memory cell of a string of series-connected memory cells, wherein the first semiconductor material is electrically connected to a second semiconductor material of the first conductivity type through a first conductive material of a second conductivity type different than the first conductivity type, and wherein the second semiconductor material forms a channel region for a different memory cell of the string of series-connected memory cells; and applying a second voltage level, less than the first voltage level, to a control gate of the memory cell and applying a third voltage level, less than the second voltage level, to a control gate of the different memory cell while applying the first voltage level to the first semiconductor material.
US09953709B2
According to one embodiment, a semiconductor memory device includes a cell transistor coupled to a word line, a sense amplifier configured to output data based on a state of the cell transistor in response to a first signal asserted; and a controller configured to apply a voltage of a magnitude continuously rising to the word line, and periodically assert the first signal after a lapse of any selected one of a first time and a second time from the start of rise of the magnitude of the voltage. The first time is different from the second time.
US09953706B2
A device for determining an actual cell state of a resistive memory cell having a plurality M of programmable cell states comprising a sensing circuit, a settling circuit, a prebiasing circuit, and a resistor coupled in parallel to the resistive memory cell, wherein the resistor is configured to reduce an effective resistance seen by the prebiasing circuit. The sensing circuit is configured to sense a sensing voltage of the resistive memory cell and output a resultant value in response to the sensing voltage which is indicative for the actual cell state. The settling circuit is configured to settle the sensing voltage to a certain target voltage representing one of the M programmable cell states. The prebiasing circuit is configured to prebiase a bitline capacitance of the resistive memory cell such the sensing voltage is close to the certain target voltage.
US09953704B2
According to one embodiment, a semiconductor memory device includes a memory cell array, a data storage circuit and a control circuit. The data storage circuit holds first data to be written into the memory cell and holds 1 bit data calculated from the first data. The control circuit writes the data of n bits into the memory cell in a first write operation and then executes a second write operation. The control circuit carries out the following control in the second write operation. It reads data stored in the memory cell in the first write operation. It restores the first data based on the data read from the memory cell and the 1 bit data held in the data storage circuit. It writes the restored first data into the memory cell.
US09953702B2
A semiconductor memory device includes a memory cell array, a control logic circuit, an internal processing circuit, and an error correction circuit. The control logic circuit generates an internal processing mode signal in response to a command from a memory controller. The internal processing circuit selectively performs the internal processing operation on a first set of data read from the memory cell array to output a processing result data, in response to the internal processing mode signal. The error correction circuit performs an error correction code (ECC) encoding on the processing result data to generate a second parity data and stores the processing result data and the second parity data in the memory cell array. The error correction circuit generates the second parity data by selecting the same ECC of a plurality of ECCs as a first ECC.
US09953699B2
The present disclosure relates to semiconductor structures and, more particularly, to a static random access memory assist circuit and methods of implementation and manufacture. The structure includes at least one static random access memory (SRAM) cell and a read assist circuit structured to apply a negative voltage to the at least one SRAM cell upon asserting of a wordline of the at least one SRAM cell.
US09953697B2
A volatile resistive memory device includes a resistive memory element including a barrier material portion and a charge-modulated resistive memory material portion. The barrier material portion includes a material selected from germanium and a silicon-germanium alloy, and the charge-modulated resistive memory material portion includes a non-filamentary, electrically conductive metal oxide. The resistive memory device may be a volatile eDRAM device. In operation, reading a resistance state of the resistive memory element does not disturb the resistance state of the charge-modulated resistive memory material portion.
US09953696B2
A semiconductor memory device may include: a memory cell region including a plurality of memory cells coupled between a plurality of word lines and a plurality of bit lines; and a refresh control block suitable for performing a first refresh operation onto the plurality of the word lines in response to a refresh signal, counting the number of active signals that are inputted between at least two neighboring refresh signals and when the counted number of the active signals is equal to or greater than a reference number, performing a second refresh operation onto a word line corresponding to a target address.
US09953695B2
A semiconductor device capable of stably holding data for a long time is provided. A transistor including a back gate is used as a writing transistor of a memory element. In the case where the transistor is an n-channel transistor, a negative potential is supplied to a back gate in holding memory. The supply of the negative potential is stopped while the negative potential is held in the back gate. In the case where an increase in the potential of the back gate is detected, the negative potential is supplied to the back gate.
US09953674B2
A data storage device is disclosed comprising a disk, a head for accessing the disk, and a sensor for generating an alternating sensor signal. The sensor is disconnected from an input of a sensing circuit and while the sensor is disconnected an alternating calibration signal is injected into the input of the sensing circuit, wherein the alternating calibration signal comprises a predetermined offset and amplitude. A response of the sensing circuit to the alternating calibration signal is evaluated to detect at least one of an offset and a gain of the sensing circuit.
US09953672B1
A repeatable runout (RRO) is accurately compensated for while moving a magnetic head radially across a disk surface. An iterative learning control algorithm is employed to determine appropriate feed-forward coefficients for an RRO compensation signal for each of a plurality of radial locations across the disk surface. The feed-forward coefficients are determined by performing multiple iterations of continuously moving the magnetic head across the disk surface along a target path while measuring a position error signal that indicates the radial error between the magnetic head and the target path. With each iteration, the iterative learning control algorithm computes new feed-forward coefficients for each of the plurality of radial locations, where the new feed-forward coefficients are selected to reduce the measured position error signal when employed to move the magnetic head along the target path.
US09953669B1
A slider for use in a disk drive, the slider including a slider body having a leading surface and an opposite trailing surface, wherein the trailing surface includes portions with extensions or depressions. The extensions or depressions include a slider bond pad.
US09953661B2
A “running range normalization” method includes computing running estimates of the range of values of features useful for voice activity detection (VAD) and normalizing the features by mapping them to a desired range. Running range normalization includes computation of running estimates of the minimum and maximum values of VAD features and normalizing the feature values by mapping the original range to a desired range. Smoothing coefficients are optionally selected to directionally bias a rate of change of at least one of the running estimates of the minimum and maximum values. The normalized VAD feature parameters are used to train a machine learning algorithm to detect voice activity and to use the trained machine learning algorithm to isolate or enhance the speech component of the audio data.
US09953656B2
An audio decoder for providing at least four audio channel signals on the basis of an encoded representation is configured to provide a first residual signal and a second residual signal on the basis of a jointly encoded representation of the first residual signal and of the second residual signal using a multi-channel decoding. The audio decoder is configured to provide a first audio channel signal and a second audio channel signal on the basis of a first downmix signal and the first residual signal using a residual-signal-assisted multi-channel decoding. The audio decoder is configured to provide a third audio channel signal and a fourth audio channel signal on the basis of a second downmix signal and the second residual signal using a residual-signal-assisted multi-channel decoding. An audio encoder is based on corresponding considerations.
US09953636B2
A method for generating a speech recognition model includes accessing a baseline speech recognition model, obtaining information related to recent language usage from search queries, and modifying the speech recognition model to revise probabilities of a portion of a sound occurrence based on the information. The portion of a sound may include a word. Also, a method for generating a speech recognition model, includes receiving at a search engine from a remote device an audio recording and a transcript that substantially represents at least a portion of the audio recording, synchronizing the transcript with the audio recording, extracting one or more letters from the transcript and extracting the associated pronunciation of the one or more letters from the audio recording, and generating a dictionary entry in a pronunciation dictionary.
US09953628B1
A microphone device including a first sound receiving module and a second sound receiving module is provided. The first sound receiving module includes a first output terminal and receives a sound signal to output a first electronic signal through the first output terminal. The second sound receiving module, which disposed adjacent to the first sound receiving module to receive the sound signal, includes a second output terminal and outputs a second electronic signal through the second output terminal accordingly. The first output terminal of the first sound receiving module is coupled to the second output terminal of the second sound receiving module, and the phase of the first electronic signal and the phase of the second electronic signal are inverse to each other.
US09953625B2
An electrostatic capacitance transducer includes: multiple elements each having a cell including a first electrode, and a vibrating film including a second electrode, formed across a gap from the first electrode; a first flexible printed circuit having multiple first lines; and a second flexible printed circuit having multiple second lines. Part of the multiple elements are grouped into a first element group, each one thereof being electrically connected to a different one of the first lines. Part of the multiple elements other than the first element group are grouped into a second element group, each one thereof being electrically connected to a different one of the second lines. The intervals between adjacent lines in at least part of the plurality of first and second lines are wider at an opposite side from a connection side where the lines have been connected to the multiple elements, than at the connection side.
US09953619B2
A display recording information and generation method thereof are disclosed. The display recording information is used to record the corresponding relationship between the display information received by a driving IC of a display and pixels of the display. The display recording information is formed by one byte (8 bits). Its first bit through six bit record a counting result that a number counter or a column counter performs a six-bit counting on a number of pixels or a number of columns of pixels starting from 0; its seventh bit uses 0 or 1 to record that the counting result belongs to the number of pixels or a number of columns of pixels; its eighth bit uses 1 to record that a most significant bit of the display information including red, green, or blue is 1, otherwise uses 0 to record.
US09953606B2
A GOA circuit and a liquid crystal device (LCD) are disclosed. The GOA circuit includes a plurality of GOA units and a control module. Each of the cascaded GOA units is configured for charging corresponding horizontal scanning lines within a display area when being driven by a first level clock, a second level clock, a first control clock, and a second control clock. After the horizontal scanning lines are fully charged by the GOA circuit, the control module is configured for resetting the gate driving signals to be at the first level, i.e., the invalid level, via the turn-on pulse signals and the negative-voltage constant-voltage source.
US09953605B2
Provided is an active matrix substrate that includes a gate line group, a source line group, a pixel electrode arranged in a display area, and a gate line driving circuit (11) formed in the display area. The gate line driving circuit (11) includes an accumulation line that accumulates a voltage for controlling the voltage level of the gate line; an output unit (U1) that controls the voltage level of the gate line according to the voltage of the accumulation line; an accumulated voltage supply unit (U2) that varies the voltage of the accumulation line according to a signal input from another gate line; and accumulated voltage adjustment units (U3) that change the voltage of the accumulation line to a predetermined level according to the control signal. The output unit (U1), the accumulated voltage supply unit (U2), and, the accumulated voltage adjustment units (U3) are arrayed along the gate line, and the output unit (U1) is arranged at a position interposed between the accumulated voltage adjustment units (U3).
US09953600B2
A display apparatus includes a first substrate and a second substrate. The first substrate includes a switching element and a pixel electrode electrically connected to the switching element. A display panel driver applies a driving signal to the display panel. The display panel driver includes a printed circuit board including a first bonding pad and a flexible substrate electrically connecting the printed circuit board with the display panel. The flexible substrate includes a second bonding pad. The second bonding pad is electrically connected to the first bonding pad of the printed circuit board. The first bonding pad overlaps the second bonding pad. At least a portion of the first bonding pad and at least a portion of the second bonding pad extend in a direction which is at an acute angle with respect to a first direction parallel with a relatively longer side of the display panel.
US09953599B2
A display device and a driving board are provided. The display device includes a buffer configured to generate a applied voltage corresponding to a driving control signal; a liquid crystal display (LCD) panel configured to change a liquid crystal transmittance thereof in accordance with the applied voltage; a switcher configured to selectively provide an intermediate voltage of a predetermined level, which makes the LCD panel transmit no light, to the LCD panel; and a driving controller configured to control the switcher to block power from being supplied to the buffer and to provide the intermediate voltage to the LCD panel in response to a predetermined event occurring.
US09953593B2
The present invention provides a liquid crystal display, comprising a first circuit board and a second circuit board and a source driving circuit which are electrically coupled to the first circuit board, wherein the first circuit board comprises a sequence controller, and the sequence controller provides a control signal and codes the control signal, and transmits the coded control signal from the first circuit board to the source driving circuit through the second circuit board, and the sequence controller directly outputs the uncoded control signal through the first circuit board to ensure a phase delay relationship between the uncoded control signal and a control signal outputted by the source driving circuit. The present invention further provides a control signal debugging method applied with the aforesaid liquid crystal display.
US09953586B2
A liquid crystal display device and a driving method thereof are disclosed. The method for driving the liquid crystal display device comprises the following steps: converting three primary color gray-scale data of a frame image to be displayed into multiple color gray-scale data; and driving different sub pixels according to the overdrive gray-scale values that are obtained through inquiring the overdrive table based on the multiple color gray-scale data of the frame image to be displayed according to a certain time sequence in two color fields. According to the method, the color shift phenomena of the traditional liquid crystal display device can be alleviated effectively.
US09953582B2
A gray-scale voltage generating circuit includes a ladder resistor circuit and a constant current source. The ladder resistor circuit includes a plurality of resistors connected in series to one another, and is configured to output a plurality of gray-scale voltages with different voltage values from ends of the respective resistors. The constant current source is configured to be connected in series to the ladder resistor circuit.
US09953576B2
An organic light-emitting diode display is disclosed. In one aspect, the display includes a display substrate including a display area and a peripheral area surrounding the display area. Scan lines are formed over the display substrate and configured to transmit a scan signal, data lines and driving voltage lines crossing the scan lines are configured to respectively provide a data signal and a driving voltage, and switching elements are electrically connected to the scan lines and data lines. Pixel electrodes are electrically connected to the switching elements, an organic emission layer is formed over the pixel electrodes, and a common electrode is formed over the organic emission layer. A common voltage line is formed substantially parallel to the data lines and configured to transmit a common voltage to the common electrode.
US09953570B2
A display device is provided that includes a plurality of pixel circuits that are arranged in a matrix and supplied with power through a first power supply line maintained at a first voltage and a second power supply line maintained at a second voltage having a positive value less than the first voltage. The display device also includes a first power supply circuit of a synchronous rectification type that outputs the first voltage to the first power supply line by chopping an input voltage. The display device further includes a second power supply circuit of the synchronous rectification type that outputs the second voltage to the second power supply line by chopping the first voltage.
US09953567B2
Provided is an organic light-emitting display device including: a first pixel; a second pixel; and a common capacitor connected to the first and second pixels, wherein the first pixel comprises: a first switching transistor transmitting a first data signal in response to a first scan signal; a second switching transistor transmitting the first data signal to the common capacitor; a first storage capacitor storing a charge corresponding to the first data signal; a first driving transistor generating a driving current corresponding to the charge stored in the first storage capacitor; and a first organic light-emitting diode (OLED) emitting light corresponding to the first driving current, and wherein the second pixel comprises: a third switching transistor transmitting a second data signal in response to a second scan signal; a fourth switching transistor transmitting the second data signal to the common capacitor; a second storage capacitor storing a charge corresponding to the second data signal; a second driving transistor generating a driving current corresponding to the charge stored in the second storage capacitor; and a second organic light-emitting diode (OLED) emitting light corresponding to the second driving current.
US09953549B2
A closure seal or tamper evident pressure sensitive label of a sandwich construction for use at the opening seam of packaging to be sealed to indicate whether the package has been opened or otherwise tampered with. The label includes a facer material, a liner material and a pressure sensitive adhesive therebetween. The facer material has cut out a lower label section joined to an upper pull tab section with adjacent tab wings. The upper pull tab section has a liner material portion cut out to adhere to a back or under side of the upper tab section upon pulling the label off the liner material for use. The lower label section and wings has exposed adhesive upon the label being pulled off the liner material for use. Once the label is placed on the packaging, the lower label section and the upper pull tab with adjacent tab wings are aligned to straddle the opening seam of the packaging. The tab maybe pulled away from the label and torn away from the wings while remaining intact with the lower label section to evidence the package has been opened or otherwise tampered with. The label is manufactured by a flexo-graphic web method.
US09953537B2
The present invention relates to a vehicle control system and a method thereof. A vehicle control system, according to the present invention, may include: a camera that is configured to photograph a front image; a tire detecting unit that is configured to detect the tire of a nearby vehicle from the image and to measure the direction of the tire; and a controller that is configured to estimate the path of the nearby vehicle based on the direction of the tire, to determine a risk of collision between a driver's vehicle and the nearby vehicle based on the path of the nearby vehicle, and to give a warning or control the driver's vehicle when there is a risk of collision.
US09953536B1
A method includes maintaining vehicle accident occurrence information, wherein the vehicle accident occurrence information includes accident location information, accident occurrence date information, and accident occurrence time information and identifying, based at least in part on the accident location information, one or more accident-prone locations. When a vehicle enters an area comprising one of the accident-prone locations, a notification is made that the vehicle has entered the area comprising one of the accident-prone locations. In addition, in response to a query, a visual representation of one of the accident-prone locations is displayed, along with accident occurrence date information and accident occurrence time information associated with the accident-prone location.
US09953532B2
An obstacle warning apparatus in a vehicle specifies a position of an obstacle relative to the vehicle based on a detection result by an obstacle sensor. A warning determination section determines whether a warning about the obstacle needs to be executed, based on the specified position of the obstacle. The warning determination section determines that the warning about the obstacle does not need to be executed when an overlap determination section determines that a vehicle range overlaps with a range where the obstacle exists.
US09953530B2
Enhanced methods and systems for securing and monitoring cargo are described. Some examples provide a cargo monitoring system (“CMS”) that is configured to track, identify, and report about anomalous conditions or events related to cargo shipments. The CMS may include a software system that receives conditions information from electromechanical locks that secure cargo. The locks include data terminals that facilitate near real time monitoring of cargo. The electromechanical locks are installed on the bars or other mechanism (e.g., door rings) that lock the doors of a cargo container, train car, van door, or the like. The data terminals include logic that is configured to transmit to the CMS information about current conditions, such as location, temperature, lock status (e.g., open, closed), tamper attempts, and the like. The cargo monitoring system interprets the received information and performs various actions based thereon, such as to transmit alerts if anomalous conditions are detected.
US09953528B2
A vehicle includes a communication unit for the communication with an event management server, a navigation system for the output of at least one route, and a planning system. The planning system is configured to: a) retrieve a list, for a plurality of devices, particularly traffic light systems and/or signal groups of traffic light systems, the list including one identification respectively of the respective device and at least one position indication respectively of the respective device, b) compare the list with the route, in order to select at least one device from the list, c) for the subscription of events with respect to the selected device, send at least one subscription message to the event management server, the subscription message including the identifications of the selected devices.
US09953524B2
Disclosed is a method, apparatus, system and computer program configured to process traffic data and provide relevant information to a driver of a vehicle. A method that is disclosed includes receiving probe data from mobile probes; deriving, from the received probe data, an approximate traffic jam shape and traffic jam area; determining when and at what point a vehicle enters the traffic jam area, and an estimated trajectory of the vehicle within the traffic jam area; and based on the step of determining, generating and sending a message to the vehicle informing the vehicle of at least an estimated time when the vehicle will exit the traffic jam area.
US09953523B2
Vehicle position data from vehicles on a roadway are received. Affected nodes of the roadway are identified based on the vehicle position data. The roadway graph, representative of the roadway, is updated based on the affected nodes of the roadway. Routes of each vehicle are optimized based on updates to the roadway graph. An indication of change in the route of each vehicle may be provided for display.
US09953520B2
An LED lighting device, and a smart home control system and method are provided. A smart terminal is configured to send a control instruction to an LED lighting device and to receive at least one sound pulse signal from the LED lighting device to remotely control one or more household electrical appliances that have an infrared remote control function. The LED lighting device includes a Wi-Fi module, an infrared remote control module and a sound pulse detection module. The Wi-Fi module receives the control instruction and transmits the control instruction to the infrared remote control module. The infrared remote control module converts the control instruction to an infrared control signal. The sound pulse detection module detects a prompt tone when the one or more household electrical appliances are turned on remotely, converts the prompt tone to a sound pulse signal, and sends the sound pulse signal to the smart terminal.
US09953518B2
Systems and methods for predicting and increasing the threat level at ATM centers prior to alarm event detection are provided. Some methods can include receiving a first signal from an ATM machine indicative of whether the ATM machine dispenses cash, receiving a second signal from a people counter indicative of persons entering or exiting a region in which the ATM machine is located, and responsive to the first signal or the second signal, determining whether to increase a threat level associated with the ATM machine irrespective of detecting an alarm event associated with the ATM machine.
US09953515B2
An inductive security sensor system is not susceptible to magnetic tampering (such as by using an external magnet or false target). A sensor assembly includes an inductive sensor (inductor coil), mounted in a relatively secure location, and a conductive proximity target incorporated with an object (such as a window or door, or an object/asset). An alarm condition can be detected as either a displacement condition in which the proximity target is displaced relative to the inductive sensor, or a tamper condition in which magnetic coupling between the proximity target and the inductive sensor is interfered with (such as by introducing a false conductive target) An inductance-to-data converter drives the inductor coil with an excitation signal to project a time-varying magnetic field for magnetically coupling to the proximity target. The IDC acquires sensor measurements (such as coil inductance), which are converted into corresponding sensor data representing alarm conditions (displacement or tamper).
US09953513B2
A waterborne vessel includes a monitoring system configured to monitor the plurality of offshore properties such that the waterborne vessel is configured to respond to an alert signal transmitted from at least one of the plurality of offshore properties when the monitoring system receives the alert signal. An offshore security monitoring system includes the waterborne vessel and a base module deployed at each of the plurality of offshore properties. A security monitoring method may include monitoring the security of the plurality of offshore properties by the monitoring system of the waterborne vessel according to various embodiments, receiving an alert signal from the at least one of the plurality of offshore properties, and responding to the alert signal. A security monitoring unit includes, a plurality of waterborne vessels according to various embodiments, and a control center in communication with the plurality of waterborne vessels.
US09953509B2
A method, computer program product, and system for object location managing. The method including generating a first list including one or more personal objects based on a personal schedule of a user, generating a second list including one or more personal objects physically located within a predefined range of a checkpoint, comparing the first list to the second list to determine which personal objects are on both lists and which personal objects are missing, if any, from the second list, and notifying the user with the results of the comparison between the first list and the second list by activating an alarm.
US09953506B2
Described are an alarming method and device, belonging to the technical field of Internet. The method includes: acquiring a monitoring video from a photographing device, wherein the photographing device captures the monitoring video by monitoring a region including a sensitive area; judging whether a monitoring target exists in the sensitive area by analyzing the monitoring video; and when the monitoring target exists in the sensitive area, sending alarming information to a terminal device to enable the terminal device to prompt alarm.
US09953505B1
A time and possibly a temperature device connects to a container with a band extending circumferentially around a portion of the container. The device has an input, a processor and a display permitting a countdown timer to be initiated relating to a status of goods in the container. For some embodiments, if temperature exceeds set ranges for specific times, step reductions, such as 10% or more can be deducted from the remaining time. The display can provide an indication of the status of the material in the container, and some embodiments provide for remote alerting to a remote communications device, such as a phone.
US09953503B2
Systems and methods that address the gap, security, and robustness limitations of known door and window contact systems and methods without increasing the overall cost thereof are provided. Some systems can include an accelerometer and a magnetometer for mounting in or on a first portion of a window or door unit and a microcontroller unit in communication with each of the accelerometer and the magnetometer. The accelerometer can measure acceleration or vibration relative to a second portion of the window or door unit and transmit the measured acceleration or vibration to the microcontroller unit, the magnetometer can measure magnetic field relative to a sensor magnet mounted on or embedded in the second portion of the window or door unit and transmit the measured magnetic field to the microcontroller unit, and the microcontroller unit can use the measured acceleration or vibration and the measured magnetic field to make a security determination.
US09953502B2
There is provided a device for attachment to an object for determining whether the device has been tampered with. The device has a body, removably attachable to an object, and configured to maintain a substantially fixed form or shape when attached to an object. A transducer is provided, connected to the body, configured to detect a change of form of the body. An indicator, connected to the transducer is configured to store the position of the body when attached to an object and indicate if the body has changed position after it has been attached.
US09953484B2
An electronic method of gaming includes displaying an evaluation area having columns of symbol display positions divided between first and second game instances by a border such that positions on a first side of the border are allocated to the first game instance and positions on a second side of the border are allocated to the second game instance. The method includes selecting symbols for the first and second game instances and displaying the selected symbols in response to initiation of a round of gaming. The method includes determining a winning game instance associated with the round. The winning instance is determined based on a round number and a position of the border divider. The method includes moving the border divider based on the determination of the winning game instance. The method includes determining an award based on symbols displayed at the symbol positions after the border divider is moved.
US09953475B2
A mobile device including a communications interface, a memory, a display screen, and a processing unit. The processing unit is configured to retrieve a first key of an asymmetric key pair. A second key of the asymmetric key pair is stored on an access control device. The processing unit is configured to generate a plurality of barcodes. Each of the barcodes includes data that is encrypted using the first key and the current date and time. At least some of the barcodes are distinct from one another. At least one of the barcodes includes access information. The processing unit is configured to sequentially display the barcodes such that only a single one of the barcodes is displayed on the display screen of the mobile device at a single time. The barcodes are read and decrypted by the access control device using the second key and the current date and time.
US09953466B2
A system for monitoring a plurality of objects in motion (OIMs) along a static route using a plurality of sensory detection devices, the static route having a plurality of route portions, each route portion having an entering boundary and an exiting boundary, at least one OIM being a designated OIM and having a tag indicating the location of the designated OIM along the route, the system comprising a plurality of sensory detection devices corresponding to the plurality of route portions for monitoring activity in each of the plurality of route portions and for providing monitor output representing activity within each of the plurality of route portions, a plurality of data stores corresponding to each of the plurality of route portions for receiving and storing the monitor output for each of the plurality of route portions, and a plurality of location detectors communicative with the tag of the designated OIM for identifying the location of the designated OIM, each location detector providing output when the designated OIM is located within a route portion.
US09953463B2
A method and a system for preparing a radiation image of a target are provided. The radiation imaging method includes the steps of collecting radiation emission data from a target, classifying the data into at least one energy range, separating the data in each energy range into N independent radiation distributions, processing the data in each of the N independent radiation distributions to estimate its true distribution; and reconstructing a radiation distribution image of the target using the processed data. The system includes at least one radiation detector module and at least one computerized component configured to perform the steps of the method.
US09953450B2
There is described a method for creating an animation, comprising: inserting at least one icon within a text related to the animation, the at least one icon being associated with an action to be performed by one of an entity and a part of an entity, at a point in time corresponding to a position of the at least one icon in the text, and a given feature of an appearance of the at least one icon being associated with one of the entity and the part of the entity; and executing the text and the at least one icon in order to generate the animation.
US09953441B2
A method for processing metal artifacts in a CT image is provided. The method may comprise: performing a first metal artifact processing on the original image to obtain a first processed image COR1 and extracting the high frequency portion of the first processed image COR1 to obtain a first high-frequency image COR1HF; performing a second metal artifact processing on the original image to obtain a second processed image COR2 and extracting the high frequency portion of the processed image COR2 second to obtain a second high-frequency image COR2HF; perform a weighted combination the first processed image COR1, the first high-frequency image COR1HF and the second high-frequency image COR2HF by using a weighting function W to obtain a result image CORImp containing no metal artifact, but information of area near the metal artifact.
US09953435B2
A method is provided for checking an image inspection system having a camera system with a camera, an illumination apparatus for targeted illumination of a printing substrate, an image processing computer, and a main computer, for quality control of products of a printing substrate processing machine by using the main computer. A reference image is entered and transmitted to the main computer, a current printing image recorded by the camera system is transmitted to the image processing computer, a partial image in a suitable region of the current printing image, not being printed with printing image data, is selected in the image processing computer, the partial image is analyzed by comparison with the reference image in the image processing computer, and the inspection system is assessed based on the analysis of the partial image by the main computer and any defects of the inspection system being found are indicated.
US09953434B2
A display device includes: an input unit which has image data inputted from an image supply device; a detection unit which detects a position of an indicator and generates indicator information including information about the detected position; a setting unit which sets a mode for processing of the indicator information to a first mode or a second mode; a drawing unit which draws a second image generated on the basis of the indicator information and superimpose the second image on a first image generated on the basis of the inputted image data; a selection unit which outputs the indicator information to the drawing unit if the first mode is set and which outputs the indicator information to the image supply device if the second mode is set; and a drawing control unit which erases the second image if a switching from the first mode to the second mode is carried out.
US09953431B2
Various aspects of a system and a method are provided for detection of objects in motion are disclosed herein. In accordance with an embodiment, the system includes an electronic device, which computes a first motion vector based on a difference of pixel values of one or more pixels in a current frame with respect to a previous frame. The current frame and the previous frame comprises at least an object in motion. The system further computes a second motion vector by use of motion-based information obtained from a sensor in the electronic device. The system determines validation of the first motion vector based on the second motion vector and one or more criteria and extracts the object in motion from the current frame based on the determined validation of the first motion vector.
US09953429B2
A system and method is provided which obtains different medical images (210) showing an anatomical structure of a patient and having been acquired by different medical imaging modalities and/or different medical imaging protocols. The system is configured for fitting a first deformable model to the anatomical structure in the first medical image (220A), fitting a second deformable model to the anatomical structure in the second medical image (220B), mutually aligning the first fitted model and the second fitted model (230), and subsequently fusing the first fitted model and the second fitted model to obtain a fused model (240) by augmenting the first fitted model with a part of the second fitted model which is missing in the first fitted model; or adjusting or replacing a part of the first fitted model based on a corresponding part of the second fitted model having obtained a better fit. The fused model represents a multimodal/multi-protocol segmentation of the anatomical structure, and provides a user with a more comprehensive understanding of the anatomical structure than known models.
US09953426B2
Digitizing objects in a picture is discussed herein. A user presents the object to a camera, which captures the image comprising color and depth data for the front and back of the object. For both front and back images, the closest point to the camera is determined by analyzing the depth data. From the closest points, edges of the object are found by noting large differences in depth data. The depth data is also used to construct point cloud constructions of the front and back of the object. Various techniques are applied to extrapolate edges, remove seams, extend color intelligently, filter noise, apply skeletal structure to the object, and optimize the digitization further. Eventually, a digital representation is presented to the user and potentially used in different applications (e.g., games, Web, etc.).
US09953425B2
A first set of attributes (e.g., style) is generated through pre-trained single column neural networks and leveraged to regularize the training process of a regularized double-column convolutional neural network (RDCNN). Parameters of the first column (e.g., style) of the RDCNN are fixed during RDCNN training. Parameters of the second column (e.g., aesthetics) are fine-tuned while training the RDCNN and the learning process is supervised by the label identified by the second column (e.g., aesthetics). Thus, features of the images may be leveraged to boost classification accuracy of other features by learning a RDCNN.
US09953424B2
A method and system for determining whether a spherical element impacts with a component of a playing field, or arranged on or proximate thereto. The method includes acquiring images of a surveillance area of a field that covers at least part of said component, such as a delimiting perimeter line of a game area or a target, performing an approximate detection of an impact of a spherical element relative to that component or proximate thereto, with an object detection and recognition system that can discern when the detected object is indeed a spherical element, automatically selecting one of the images acquired for the same point in time and that includes the area where said impact has occurred, and analysing the selected image to check if the spherical element has impacted or not with the component.
US09953421B2
A disappearing direction determination device and method, a video camera calibration apparatus and method, a video camera and a computer program product are provided. The device comprises: a moving target detecting unit for detecting in the video image a moving target area where a moving object locates; a feature point extracting unit for extracting at least one feature point on the moving object in the detected moving target area; a moving trajectory obtaining unit for tracking a movement of the feature point in a predetermined number of video image frames to obtain a movement trajectory of the feature point; and a disappearing direction determining unit for determining, according to the movement trajectories of one or more moving objects in the video image, a disappearing direction pointed by a major moving direction of the moving objects. Thus, a disappearing direction and video camera gesture parameters can be determined accurately.
US09953397B2
A method implemented using at least one processor includes receiving a target image and a reference image. The target image is a distorted magnetic resonance image and the reference image is an undistorted magnetic resonance image. The method further includes selecting an image registration method for registering the target image to the reference image, wherein the image registration method uses an image transformation. The method further includes performing image registration of the target image with the reference image, wherein the image registration provides a plurality of optimized parameters of the image transformation. The method also includes generating a corrected image based on the target image and the plurality of optimized parameters of the image transformation.
US09953383B1
Disclosed herein are a method, system, and computer-readable storage medium with instructions for recommending locations to a user. Preferred criteria may be selected by the user, for example, or a third party, and provide objective or subjective information that the user is seeking in a location. Embodiments may include compiling objective information with the location and comparing the objective information to preferred criteria. A user's profile may be compared to another person's profile, where the other person's profile is associated to the location. A location may be recommended to the user if the objective information correlates to the preferred criteria and if the other person's profile correlates to the user's profile. Subjective information associated with the location may be provided to the user along with the recommended location. Furthermore, a location may be recommended to the user if the subjective information correlates to the preferred criteria.
US09953376B2
A work management system (1) includes: an image capturing device (20) worn by a worker; and a server device (60). The image capturing device (20) includes: an image capturing section (21) for capturing an image of a work range of the worker; and a communication section (30) for transmitting, to the server device (60), at least one of (i) the image captured by the image capturing section (21) and (ii) generated information generated in accordance with the image. The server device (60) includes a control section (70) for managing the at least one of the image and the generated information which one is received from the communication section.
US09953375B2
A work management system (1) includes: an image capturing device (20) worn by a worker; and a server device (60). The image capturing device (20) includes: an image capturing section (21) for capturing an image of a work range of the worker; and a communication section (30) for transmitting, to the server device (60), at least one of (i) the image captured by the image capturing section (21) and (ii) generated information generated in accordance with the image. The server device (60) includes a control section (70) for managing the at least one of the image and the generated information which one is received from the communication section.
US09953370B2
System and methods for performing a risk management assessment of a property using at least aerial imagery of the property and additional data about the property that is evaluated against risk management criteria. Data acquired through aerial imagery includes identifying buildings and floor area of the buildings, condition of the buildings including roof and exterior walls, and identifying other property hazards. Additional data may include property information coming from multiple sources including city and County governments, contractors and insurance companies. The resulting risk management assessment may be used to settle insurance claims and to determine insurance products and premium rates offered on the property.
US09953353B2
A sales catalog interface, wherein the architecture allows the user the ability to controllably view the data with certain engines either running or not running, so that certain items of detailed information is either displayed or not displayed to the user. Data from engines may include, price, eligibility, and availability, may be retrieved synchronously or asynchronously, and may be based upon consumer context, such as account type, geography, etc.
US09953349B2
A computer implemented method for creating a page including content includes the steps of inserting, with a computing device, one or more placeholders in the page, requesting, with a computing device, parameters, receiving, with a computing device, meta data in response to the step of requesting parameters, creating, with a computing device, frames in the page based on the meta data at positions corresponding to the placeholders, requesting, with a computing device, content, receiving, with a computing device, content in response to the request for content, and placing the content in the frames for display on a display device.
US09953344B2
The disclosure herein provides systems and methods for a media enhancement system configured to associate a secondary media signal (for example, the secondary media signal can comprise an advertisement) to a primary media signal (for example, a radio broadcast). The disclosure herein additionally provides systems and methods for a media enhancement system that enables the generating, transmitting, displaying, and/or responding to a plurality of associated and/or unassociated secondary media signals, based on a primary media content from a primary media signal, user characteristics (for example, demographic and/or geographic information), and/or third-party preferences (for example, the goals of advertisers). The secondary media signals can be used to enhance the primary media content already being provided to the user on a user device. The secondary media signals can also be used to create psychological associations or relationships with the primary media content already being provided to the user.
US09953339B2
An end-to-end automated management system facilitates generation of advertisement proposals, and purchase orders, over one or many media outlets and stations. Once an advertisement proposal is purchased and inserted into a traffic management and billing system, near-real-time performance feedback about the advertisements can be obtained from media consumers through a media presentation application presenting the advertisement, via a social media service, or the like. The consumer feedback and other performance factors, which can be received concurrently with airing of an advertisement, can be considered in determining whether a particular advertisement or an advertising proposal as a whole, is effective in meeting purchaser requirements. Advertisement copy can be changed according to the proposal parameters, without purchaser intervention, to provide near-real-time responsiveness to consumer feedback.
US09953337B2
Systems and methods of tracking and rewarding users of any of a variety of content hosting systems, such as search engines. In one embodiment, a method of rewarding a user of a search engine includes receiving secure identification information identifying a user, retrieving user account information using the secure identification information, receiving a search query associated with the user account information, crediting the user account with a reward that is directly related to providing the search query, and returning search results in response to the received search query.
US09953331B2
Disclosed are methods and systems for implementing extensibility in sales prediction engines. An extensibility framework may be used to modify the metadata schema of the data used by the sales prediction engine to account for extended attributes and entities. The sales prediction engine is also modified to recognize the extended attributes and entities so that a user will be able to create new rules and train new models based on the extended attributes and entities.
US09953323B2
A bank customer's CE device is used to authorize transactions using the customer's electronic debit or credit card (“e-card”). If the CE device is determined not to be proximate to the e-card, the transaction is limited.
US09953321B2
A system and method for detecting a test event involving a financial transaction device at a merchant having a merchant profile is disclosed. The method includes receiving data associated with a transaction involving a financial transaction device; calculating a score using at least the transaction data; comparing the score to a threshold value; and attaching a merchant probe flag to the merchant profile if the score exceeds the threshold value. The merchant probe flag indicates a likelihood that a test event has occurred at the merchant based on the score. If a test event has occurred, then financial transaction devices involved in the test event can have their profiles updated to reflect that they have been probed. If a financial transaction device that has been probed is used in a subsequent transaction, then a specialized fraud scoring model can be used to provide an improved fraud risk score.
US09953318B1
The disclosed embodiments provide a system that verifies user access to financial accounts. During operation, the system obtains a first set of financial data representing one or more financial transactions of a first financial account. Next, the system matches the one or more financial transactions to a second set of financial data representing issuance of the one or more financial transactions from a second financial account. The system then uses the matched financial transactions to automatically generate a first verification of ownership of the first financial account by a user without requiring input associated with the one or more financial transactions from the user.
US09953315B2
A method for building an advanced storage key includes: storing, in a mobile device, at least (i) device information associated with the mobile device, (ii) program code associated with a first program including an instance identifier, and (iii) program code associated with a second program including a first key; generating a device fingerprint associated with the mobile device based on the device information via execution of the code associated with the first program; generating a random value via execution of the code associated with the first program; building a diversifier value based on the generated device fingerprint, the generated random value, and the instance identifier included in the code associated with the first program; and decrypting the built diversifier value using the first key stored in the code associated with the second program via execution of the code associated with the second program to obtain a storage key.
US09953308B2
Provided are computer implemented methods and systems for messaging, calling, and single-touch and one-scan payments and buying via mobile and wearable devices. An exemplary system comprises a processor and a database in communication with the processor. The processor is configured to provide a haptic control associated with the system. The haptic control is shown on a display of a mobile and wearable device overlapping other visual elements. The haptic control provides mode selection elements associated with a payment, messaging, and calling modes. The processor receives a selection of the payment mode via the mode selection elements from a user. Upon the selection, context is extracted from the display. Based on the context, a payment transaction type which the user intends to perform is determined. The payment transaction type includes a payment receiving transaction and a payment sending transaction. Based on the determining, a transaction request is sent to a financial institution using the extraction.
US09953305B2
A system and method for online payments over the Internet, able to handle several transactions coming from various participants and contributing to a single payment on a merchant's bank account. In many cases, the modifications designed to make a merchant server capable of managing transactions from several participants contributing to a single payment are difficult, even impossible, to carry out since the server's architecture is imposed by the structure of the e-commerce platform used. A server (4), called mirror authorization server, is added and connected to a set typically formed by a customer computer (1), a merchant server (2) and a bank authorization server (3). In particular, the mirror authorization server is used to replace the actual bank authorization server for the purpose of performing certain operations.
US09953286B2
The present systems and methods describe a computer system that collects user shipping preferences, including, for example, the shipping speeds (e.g., standard three to five day shipping) a user selects on various retailer websites. The system is configured to determine the one or more preferred shipping methods for the user based on the collected shipping preferences and to save the preferred shipping methods to memory (e.g., the user commonly prefers standard shipping). When the user visits an online retailer, the system, detects a shipping field (e.g., where the user may select or input a shipping preference), accesses the saved preferred shipping method (e.g., the user prefers standard shipping), and populates the shipping field with the saved preferred shipping method (e.g., the system automatically selects “standard shipping” for the user).
US09953284B2
Systems and methods for providing a prioritization of the focus and allocation of available resources and/or funding for due diligence analyses of a variety of candidate projects competing for limited funding are disclosed. Various methods may also determine a confidence level metrics associated with the information and/or estimates associated with the candidate projects. Evolutionary algorithms may be applied to perform multi-objective optimization of objectives based, at least in part, on currently available information and/or estimates associated with the candidate projects. A priority score, for the purpose of allocating due diligence attention and resources to increase confidence levels in assumptions associated with candidate projects, may be determined for a particular project based, at least in part, on the current confidence level associated with that particular project and the percentage of non-dominated projects within which the particular project is included. The optimization may be performed multiple times, such as once for every stakeholder that may have provided information and/or estimates associated with the candidate projects, to identify a plurality of non-dominated solutions to the optimization problem.
US09953281B2
A system and/or a method based on a scalable requirement, compliance and resource management methodology for designing a product/service, optimizing relevant processes and enhancing real time and/or near real time collaboration between many users is disclosed. Utilizing, a learning (self-learning) computer, a requirement, compliance and resource management methodology is further integrated with (a) a machine learning/fuzzy/neuro-fuzzy logic algorithm and/or (b) statistical algorithm and/or (c) weighting logic algorithm and/or (d) game theory algorithm and/or (e) a blockchain and enhanced with a graphical user interface.
US09953266B2
Energy usage can be monitored within at least one building having a plurality of energy consuming components. A database can be generated that contains values for a set of data points corresponding to data received from the plurality of energy consuming components. A change in a configuration can be detected for the plurality of energy consuming components based upon a change in values received from plurality of energy consuming components relative to the database. Based upon the change, an additional data point can be added to the set of data points in the database. Based upon the values for the set of data points, a probability can be determined that a rule for the additional data point is valid. A message can then be generated that includes the determined probability.
US09953251B2
An apparatus includes multiple image processing units configured to execute image processing on input data, which are connected in serial, and include two or more image processing units having the same image processing function. The image processing units include a transfer unit configured to transfer input first data to a next image processing unit without changing the data, and an image processor configured to execute image processing on the first data to output second data. At least one of the image processing units transfers the first data to the next image processing unit without changing the first data when the first data is input, and also outputs the second data.
US09953244B2
A system performs operations including receiving multi-dimensional single-look data from a sensor, applying multi-dimensional complex weighting functions including apodizations from among a general class of such functions to the complex data, so as to induce nonlinear variations in the amplitude and phase of the multi-dimensional spectral image responses, forming a number of features per voxel across a number of multi-dimensional spectral image responses, and using a multi-dimensional non-parametric classifier to form features to discriminate main lobe from sidelobe imaged voxels with the weighting function applied to received data. The operations include identifying each voxel by processing a set of transforms from the multi-dimensional complex weighting functions and outputting a multi-dimensional main lobe binary image, representing main lobe versus sidelobe locations.
US09953241B2
Systems and methods for generating a crop yield estimate for an area as small as an individual field from images captured by a satellite are disclosed. The system generates simulations of crop yields in a region that includes the area by applying combinations of different parameters to a crop yield models. Observable quantities for simulated yields are determined from the simulations. The simulations and the observable properties are used to train a statistic model for the region that has two or more variables. Images captured by a satellite that include at least a portion of the area are obtained. Crop information is then determined from the images and weather information associated with the dates that the images where captured is obtained. The statistical model is then applied to the crop information and the weather information to determine a crop yield estimate.
US09953237B2
A gloss determination device includes: an image acquiring unit that acquires a parallelly polarized image obtained by photographing an object illuminated by first polarized light through a polarizing filter which passes a polarized component polarized in a same direction as a polarization direction of the first polarized light, and a perpendicularly polarized image obtained by photographing the object illuminated by second polarized light through a polarizing filter which passes a polarized component polarized in a perpendicular direction to the polarization direction of the second polarized light; a differential image producing unit that produces a differential image indicating differences in brightness between the parallelly polarized image and the perpendicularly polarized image; and a gloss determining unit that determines a gloss condition of the object based on the differential image.
US09953235B2
A vehicle number image pickup device includes an image pickup means for taking an image including identification information for identifying a vehicle in a predetermined frame period, an image division means for dividing each frame image obtained from the image pickup means into at least two images, a difference processing means for determining whether a different is present between frame images divided by the image division means, and an image output means for successively outputting the divided frame images for each frame when the different is determined to be present between the frame images by the difference processing means.
US09953233B2
A method of determining whether a biometric object is part of a live individual is described. In one such method, image information is acquired from the biometric object by using a sensor, such as an ultrasonic sensor. The image information may be analyzed in at least two analysis stages. One of the analysis stages may be a temporal analysis stage that analyzes changes in the image information obtained during a time period throughout which the biometric object was continuously available to the sensor. For example, a dead/alive stage may analyze differences between image information taken at two different times in order to identify changes from one time to the next. Other stages may focus on aspects of a particular image information set, rather than seeking to assess changes over time. These other stages seek to determine whether an image information set exhibits characteristics similar to those of a live biometric object.
US09953223B2
Disclosed herein are methods and systems for assigning pixels distance-cost values using a flood fill technique. One embodiment takes the form of a process that includes obtaining video data depicting a head of a user, obtaining depth data associated with the video data, and selecting seed pixels for a flood fill at least in part by using the depth information. The process also includes performing the flood fill from the selected seed pixels. The flood fill assigns respective distance-cost values to pixels of the video data based on position-space cost values and color-space cost values. In some embodiments, the process also includes classifying pixels of the video data as foreground based at least in part on the assigned distance-cost values. In some other embodiments, the process also includes assigning pixels of the video data foreground-likelihood values based at least in part on the assigned distance-cost values.
US09953222B2
A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.
US09953214B2
A gaze direction determining system and method is provided. A two-camera system may detect the face from a fixed, wide-angle camera, estimates a rough location for the eye region using an eye detector based on topographic features, and directs another active pan-tilt-zoom camera to focus in on this eye region. A eye gaze estimation approach employs point-of-regard (PoG) tracking on a large viewing screen. To allow for greater head pose freedom, a calibration approach is provided to find the 3D eyeball location, eyeball radius, and fovea position. Both the iris center and iris contour points are mapped to the eyeball sphere (creating a 3D iris disk) to get the optical axis; then the fovea rotated accordingly and the final, visual axis gaze direction computed.
US09953204B2
A fingerprint sensing system comprising a device connection interface including a device reference potential input, a sensing arrangement, and sensing reference potential providing circuitry. The sensing arrangement includes multiple sensing structures and read-out circuitry connected to each of the sensing structures. The sensing reference potential providing circuitry provides a sensing reference potential to the sensing arrangement in the form of a sensing reference signal alternating between a first sensing reference potential and a second sensing reference potential, and comprises a first capacitor; a second capacitor; charging circuitry; and switching circuitry for alternatingly switching the sensing reference potential providing circuitry between a first state in which the first capacitor and the second capacitor are connected in parallel to the charging circuitry; and a second state in which the first capacitor and the second capacitor, when charged, are connected in series between the device reference potential input and the sensing arrangement.
US09953203B2
The present disclosure, related to the technical field of fingerprint identification, discloses a ramp wave generation circuit, a digital-to-analog conversion circuit, and a fingerprint identification system. The ramp wave generation circuit comprises: an integrating circuit, configured to output a ramp wave signal; a signal regulation circuit, comprising a feedback control loop and a transconductance amplifier connected in series, wherein the feedback control loop monitors the ramp wave signal output by the integrating circuit, and outputs a regulation control signal to the transconductance amplifier, the transconductance amplifier corrects, according to the regulation control signal, a ramp wave signal output by the integrating circuit within a next period; and a voltage generation circuit, configured to respectively output a reference voltage signal to the integrating circuit and the signal regulation circuit.
US09953188B2
A system for storing and controlling access to data representing personal behavior, the system comprising an ID retrieval apparatus to receive identifying information revealing the identity of an individual, to submit a request corresponding to the received identifying information to an ID generation apparatus, to receive an anonymized user ID in return, and to output the user ID to the individual; a data engine comprising a data store and an access controller, the store being inaccessible to the ID retrieval apparatus and configured to receive and store personalized behavioral data, access to the stored behavioral data being controlled by the controller, the behavioral data representing behavior of the individual, which data are anonymously personalized with the user ID; the controller controlling access to the data by requiring that access requests from service providers specify the user ID with which the behavioral data are personalized to access the data.
US09953182B2
A kernel receives a request to execute a first process instance from an agent. The first process instance is an instance of a first program. The kernel obtains one or more access control rules related to the agent. The kernel permits execution of the first process instances based on the access control rules. The kernel detects the first process instance attempting to access a second process instance during execution of the first process instance. The second process instance is an instance of a second program currently being executed. The kernel determines whether to grant the first process instance permission to access the second process instances based on the access control rules.
US09953174B2
A method for authorizing a service is disclosed. In the embodiment, the method involves receiving a packet carried via a first power signal according to an inductive wireless power transfer communications protocol, the packet received at a power receiver within a mobile device, extracting a password from the received packet, storing the extracted password in memory within the mobile device, transmitting the stored password in a packet via a second power signal according to the inductive wireless transfer communications protocol to authorize a service.