Abstract:
According to one embodiment, there is provided a memory card including a first surface, a second surface, and 1st to Nth terminal groups. The first surface includes first to Nth rows, where N is an integer of two or greater. The second surface faces the opposite side from the first surface. The 1st to Nth terminal groups are placed in the first to Nth rows. The 1st terminal group includes terminals to which differential clock signals are assigned, terminals to which single-ended signals are assigned, and a terminal to which a first power supply voltage is assigned. Kth terminal group, where K is an integer no smaller than two and no greater than N, includes terminals to which differential data signals are assigned.
Abstract:
A semiconductor device, the device comprising: a first silicon layer comprising first single crystal silicon; an isolation layer disposed over said first silicon layer; a first metal layer disposed over said isolation layer; a second metal layer disposed over said first metal layer; a first level comprising a plurality of transistors, said first level disposed over said second metal layer, wherein said isolation layer comprises an oxide to oxide bond surface, wherein said plurality of transistors comprise a second single crystal silicon region; and a plurality of capacitors, wherein said plurality of capacitors comprise functioning as a decoupling capacitor to mitigate power supply noise.
Abstract:
A memory device in which data can be retained for a long time is provided. The memory device includes a memory element and a transistor which functions as a switching element for controlling supply, storage, and release of electrical charge in the memory element. The transistor includes a second gate electrode for controlling the threshold voltage in addition to a normal gate electrode. Further, the off-state current of the transistor is extremely low because an active layer thereof includes an oxide semiconductor. In the memory device, data is stored not by injection of electrical charge to a floating gate surrounded by an insulating film at high voltage but by control of the amount of electrical charge of the memory element through the transistor whose off-state current is extremely low.
Abstract:
Tube connector including two conductive elements and a resistor and/or capacitor electrically connected therebetween, the two elements arranged such that an electrical circuit including the two conductive elements and the resistor and/or capacitor will be closed when the tube connector mates with a device connector of a medical device.
Abstract:
The semiconductor device includes: a transistor having an oxide semiconductor layer; and a logic circuit formed using a semiconductor material other than an oxide semiconductor. One of a source electrode and a drain electrode of the transistor is electrically connected to at least one input of the logic circuit, and at least one input signal is applied to the logic circuit through the transistor. The off-current of the transistor is preferably 1×10−13 A or less.
Abstract:
A memory device of the non-volatile type including a memory array having a plurality of memory cells organized as sectors, each sector having a main word line associated with a plurality of local word lines, each local word line coupled to the main word line by a respective local word line driver circuit, each of the local word line driver circuits consisting of a first MOS transistor coupled between the respective main word line and a respective local word line and a second MOS transistor coupled between the respective local word line and a first biasing terminal.
Abstract:
The semiconductor device includes: a transistor having an oxide semiconductor layer; and a logic circuit formed using a semiconductor material other than an oxide semiconductor. One of a source electrode and a drain electrode of the transistor is electrically connected to at least one input of the logic circuit, and at least one input signal is applied to the logic circuit through the transistor. The off-current of the transistor is preferably 1×10−13 A or less.
Abstract:
In an embodiment, a memory device includes a stack of tiers of memory cells, a tier of local devices at a level above the stack of tiers of memory cells, and a tier of global devices at substantially a same level as the tier of local devices. A local device may provide selective access to a data line. A global device may provide selective access to a global access line. A tier of memory cells may be selectively coupled to a global access line by the global device of the tier of global devices.
Abstract:
A NAND Flash based content addressable memory (CAM) is used for a key-value addressed storage drive. The device can use a standard transport protocol such as PCI-E, SAS, SATA, eMMC, SCSI, and so on. A host writes a key-value pair to the drive, where the drive writes the keys along bit lines of a CAM NAND portion of the drive and stores the value in the drive. The drive then maintains a table linking the keys to location of the value. In a read process, the host provides a key to drive, which then broadcasts down the word lines of blocks storing the keys. Based on any matching bit lines, the tables can then be used to retrieve and supply the corresponding data to the host.
Abstract:
A memory system including a non-volatile memory device and a memory controller is provided. When a read operation on a first data initially output from the non-volatile memory device during a first read operation is successful, the memory controller may change a read voltage for reading a second data stored in the non-volatile memory device during a second read operation.