Abstract:
A SnAgCuSbBi-based Pb-free solder alloy is disclosed. The disclosed solder alloy is particularly suitable for, but not limited to, producing solder joints, in the form of solder preforms, solder balls, solder powder, or solder paste (a mixture of solder powder and flux), for harsh environment electronics.
Abstract:
A power semiconductor apparatus includes a conductive circuit pattern, a power semiconductor device, a sealing member, a conductive post, and a conductive post. A first conductive post is connected to the conductive circuit pattern. A second conductive post is connected to the power semiconductor device. The first conductive post includes a metal pin and a conductive bonding member. The conductive post includes a metal pin and a conductive bonding member.
Abstract:
Highly reliable chip mounting is accomplished by using a substrate having such a shape that a stress exerted on a flip-chip-connected chip can be reduced, so that the stress exerted on the chip is reduced and separation of an interlayer insulating layer having a low dielectric constant (low-k) is minimized. Specifically, in a chip mounting structure, a chip including an interlayer insulating layer having a low dielectric constant (low-k) is flip-chip connected to a substrate via bumps is shown. In the chip mounting structure, the substrate has such a shape that a mechanical stress exerted on the interlayer insulating layer at corner portions of the chip due to a thermal stress is reduced, the thermal stress occurring due to a difference in coefficient of thermal expansion between the chip and the substrate.
Abstract:
A method of bonding a plurality of die having first and second metal layers on a die surface to a board, comprising placing a first die onto a board comprising one of a ceramic or substrate board or metal lead frame having a solderable surface and placing the first die and the board into a reflow oven. The method includes reflowing at a first reflow temperature for a first period until the first metal board layer and at least one of the first and second metal die layers of the first die form an alloy to adhere the first die to the board. The newly formed alloy has a higher melting temperature than the first reflow temperature. Accordingly, additional die may be reflowed and attached to the board without causing the bonding of the first die to the board to fail if the same reflow temperature is used.
Abstract:
An interconnection structure and method disclosed for providing an interconnection structure that includes conductive features having reduced topographic variations. The interconnection structure includes a contact pad disposed over a substrate. The contact pad includes a first layer of a first conductive material and a second layer of a second conductive material over the first layer. The first conductive material and the second conductive material are made of substantially the same material and have a first average grain size and a second average grain size that is smaller than the first average grain size. The interconnection structure also includes a passivation layer covering the substrate and the contact pad, and the passivation layer has an opening exposing the contact pad.
Abstract:
An interconnection structure and method disclosed for providing an interconnection structure that includes conductive features having reduced topographic variations. The interconnection structure includes a contact pad disposed over a substrate. The contact pad includes a first layer of a first conductive material and a second layer of a second conductive material over the first layer. The first conductive material and the second conductive material are made of substantially the same material and have a first average grain size and a second average grain size that is smaller than the first average grain size. The interconnection structure also includes a passivation layer covering the substrate and the contact pad, and the passivation layer has an opening exposing the contact pad.
Abstract:
According to one embodiment, a first electrode is formed on a first face of a first semiconductor chip, and a second electrode and a protrusion are formed on a second face of a second semiconductor chip. The first semiconductor chip and the second semiconductor chip are spaced from one another by the protrusion in such a manner that the first face and the second face face each other. The first semiconductor chip and the second semiconductor chip are subject to reflow to be electrically connected to each other, and then the protrusion is cured at a temperature lower than a reflow temperature.
Abstract:
According to various embodiments, a semiconductor device may include: at least one first contact pad on a front side of the semiconductor device; at least one second contact pad on the front side of the semiconductor device; a layer stack disposed at least partially over the at least one first contact pad, wherein the at least one second contact pad is at least partially free of the layer stack; wherein the layer stack includes at least an adhesion layer and a metallization layer; and wherein the metallization layer includes a metal alloy and wherein the adhesion layer is disposed between the metallization layer and the at least one first contact pad for adhering the metal alloy of the metallization layer to the at least one first contact pad.
Abstract:
A method for manufacturing metal powder comprising: providing a basic metal salt solution; contacting the basic metal salt solution with a reducing agent to precipitate metal powder therefrom; and recovering precipitated metal powder from the solvent.
Abstract:
A system and method for packaging semiconductor dies is provided. An embodiment comprises a first package with a first contact and a second contact. A post-contact material is formed on the first contact in order to adjust the height of a joint between the contact pad a conductive bump. In another embodiment a conductive pillar is utilized to control the height of the joint between the contact pad and external connections.