Abstract:
A method of manufacturing a semiconductor package includes preparing a wafer having a first surface on which a plurality of semiconductor chips are disposed and a second surface, opposite to the first surface. The second surface of the wafer is ground. The ground second surface of the wafer is coated with a liquid adhesive material to form an uncured adhesive layer having a thickness of 5 μm or less. The uncured adhesive layer on the wafer is semi-cured. The wafer is cut so as to separate the plurality of semiconductor chips from one another. The plurality of semiconductor chips are stacked using the semi-cured adhesive layer. The semi-cured adhesive layer disposed between the plurality of stacked semiconductor chips is fully cured.
Abstract:
A method for bonding a first substrate with a second substrate by means of a connecting layer that is arranged between the substrates and that is comprised of a connecting material with the following steps: applying the connecting material to the first substrate and/or the second substrate in liquid form, and distributing the connecting material between the substrates by bringing the substrates closer and as a result forming the shape of the connecting layer with a thickness t.
Abstract:
In some embodiments, the present disclosure relates to a package assembly having a bump on a first substrate. A molding compound is on the first substrate and contacts sidewalls of the bump. A no-flow underfill layer is on a conductive region of a second substrate. The no-flow underfill layer and the conductive region contact the bump. A mask layer is arranged on the second substrate and laterally surrounds the no-flow underfill layer. The no-flow underfill layer contacts the substrate between the conductive region and the mask layer.
Abstract:
A joined structure which is configured such that a space between adjacent substrates is filled with a filling material. The joined structure includes a first substrate having a first conductor formed on a surface of the first substrate, a second substrate having a second conductor formed on a surface of the second substrate, arranged so that a surface of the first substrate faces a surface of the second substrate, a connecting conductor which electrically connects the first conductor and the second conductor, and a filling material between the first substrate and the second substrate. The filling material is formed into such a shape that a space is provided which corresponds to at least one of the first conductor, the second and the connecting conductor.
Abstract:
An article may include a structure including a patterned metal on a surface of a substrate, the patterned metal including metal features separated by gaps of an average dimension of less than about 1000 nm. A porous low dielectric constant material having a dielectric value of less than about 2.7 substantially occupies all gaps. An interface between the metal features and the porous low dielectric constant material may include less than about 0.1% by volume of voids. A method may include depositing a filling material including a silicon-based resin having a molecular weight of less than about 30,000 Da and a porogen having a molecular weight greater than about 400 Da onto a structure comprising a patterned metal. The deposited filling material may be subjected to a first thermal treatment to substantially fill all gaps, and subjected to a second thermal treatment and a UV radiation treatment.
Abstract:
The present invention provides an adhesive composition having excellent strength in a cracked state, and is an adhesive composition characterized by containing a polyimide (A),a polyfunctional epoxy compound (B), an epoxy curing agent (C), and inorganic particles (D), the ratio of the polyimide (A) in a nonvolatile organic component being 3.0 wt % or more and 30 wt % or less, the ratio of the epoxy curing agent (C) in the nonvolatile organic component being 0.5 wt % or more and 10 wt % or less, and T/M being 400 or more and 8000 or less, where T is the total number of grams of the nonvolatile organic component, and M is the number of moles of epoxy groups in the nonvolatile organic component.
Abstract:
An article may include a structure including a patterned metal on a surface of a substrate, the patterned metal including metal features separated by gaps of an average dimension of less than about 1000 nm. A porous low dielectric constant material having a dielectric value of less than about 2.7 substantially occupies all gaps. An interface between the metal features and the porous low dielectric constant material may include less than about 0.1% by volume of voids. A method may include depositing a filling material including a silicon-based resin having a molecular weight of less than about 30,000 Da and a porogen having a molecular weight greater than about 400 Da onto a structure comprising a patterned metal. The deposited filling material may be subjected to a first thermal treatment to substantially fill all gaps, and subjected to a second thermal treatment and a UV radiation treatment.
Abstract:
Embodiments of the present disclosure provide a semiconductor device, a semiconductor package, and a method for manufacturing a semiconductor device. The semiconductor device comprises: a semiconductor die; an electrical isolation layer formed on a surface of the semiconductor die; a substrate; and a non-conductive adhesive layer disposed between the electrical isolation layer and the substrate, so as to adhere the electrical isolation layer to the substrate.
Abstract:
A substrate bonding method is able to reliably bond substrates while avoiding a reduction in yield made worse by finer pitches. The substrate bonding method can include: forming an adhesive resin layer on a surface of a first substrate on which a pad has been formed; forming an opening on the adhesive resin layer above the pad; filling the opening with molten solder to form a pillar-shaped solder bump; and applying heat and pressure to the first substrate and a second substrate while a terminal formed on the second substrate is aligned with the solder bump.
Abstract:
The present invention provides an adhesive composition having excellent strength in a cracked state, and is an adhesive composition characterized by containing a polyimide (A), polyfunctional epoxy compound (B), an epoxy curing agent (C), and inorganic particles (D), the ratio of the polyimide (A) in a nonvolatile organic component being 3.0 wt % or more and 30 wt % or less, the ratio of the epoxy curing agent (C) in the nonvolatile organic component being 0.5 wt % or more and 10 wt % or less, and T/M being 400 or more and 8000 or less, where T is the total number of grams of the nonvolatile organic component, and M is the number of moles of epoxy groups in the nonvolatile organic component.