摘要:
A manufacturing method of a light-emitting substrate and a display device are provided. The manufacturing method includes: providing a substrate provided with a plurality of electrodes, forming a patterned photoresist layer including openings exposing the electrodes on a surface of the substrate, forming connecting parts in the openings, removing the patterned photoresist layer, and bonding a plurality of light-emitting elements on the connecting parts, wherein slope angles of a plurality of connecting part sidewalls of the connecting parts are ranged between 40° and 140°. The method could improve a yield rate of light-emitting elements bonded to electrodes through connecting parts.
摘要:
External electrical connectors and methods of forming such external electrical connectors are discussed. A method includes forming an external electrical connector structure on a substrate. The forming the external electrical connector structure includes plating a pillar on the substrate at a first agitation level affected at the substrate in a first solution. The method further includes plating solder on the external electrical connector structure at a second agitation level affected at the substrate in a second solution. The second agitation level affected at the substrate is greater than the first agitation level affected at the substrate. The plating the solder further forms a shell on a sidewall of the external electrical connector structure.
摘要:
A semiconductor device and a method of manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device, and a method of manufacturing thereof, that comprises a substrate including a dielectric layer, at least one conductive trace and conductive bump pad formed on one surface of the dielectric layer, and a protection layer covering the at least one conductive trace and conductive bump pad, the at least one conductive bump pad having one end exposed through the protection layer, and a semiconductor die electrically connected to the conductive bump pad of the substrate.
摘要:
Apparatus and methods for providing solder pillar bumps. Pillar bump connections are formed on input/output terminals for integrated circuits by forming a pillar of conductive material using plating of a conductive material over terminals of an integrated circuit. A base portion of the pillar bump has a greater width than an upper portion. A cross-section of the base portion of the pillar bump may make a trapezoidal, rectangular, or sloping shape. Solder material may be formed on the top surface of the pillar. The resulting solder pillar bumps form fine pitch package solder connections that are more reliable than those of the prior art.
摘要:
An integrated device package that includes a die, a substrate, a fill and a conductive interconnect. The die includes a pillar, where the pillar has a first pillar width. The substrate (e.g., package substrate, interposer) includes a dielectric layer and a substrate interconnect (e.g., surface interconnect, embedded interconnect). The fill is located between the die and the substrate. The conductive interconnect is located within the fill. The conductive interconnect includes a first interconnect width that is about the same or less than the first pillar width. The conductive interconnect is coupled to the pillar and the substrate interconnect. The fill is a non-conductive photosensitive material. The fill is a photosensitive film. The substrate interconnect includes a second interconnect width that is equal or greater than the first pillar width. The conductive interconnect includes one of at least a paste, a solder and/or an enhanced solder comprising a polymeric material.
摘要:
An apparatus includes a spool configured to supply a wire, a cutting device configured to form a notch in the wire, and a capillary configured to bond the wire and to form a stud bump. The apparatus is further configured to pull the wire to break at the notch, with a tail region attached to the stud bump.
摘要:
A manufacturing technique includes creating stud bumps on the electrical contacts on a die, either in wafer or die form. A separate stencil or carrier is provided with cavities that correspond to the electrical contacts on the die. The cavities are filled with solder paste and the die is brought into close proximity with the stencil so that the stud bumps extend into the cavities and come into contact with the solder paste. When the die is removed, the solder paste stays affixed to the stud bumps and thereby the solder paste is transferred and delivered to the stud bumps. The die can then be affixed to a substrate such as a PCB.
摘要:
Interconnection elements for electronic components, exhibiting desirable mechanical characteristic (such as resiliency, for making pressure contacts) are formed by using a shaping tool (512) to shape an elongate core element (502) of a soft material (such as gold or soft copper wire) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped core element with a hard material (such as nickel and its alloys), to impart to desired spring (resilient) characteristic to the resulting composite interconnection element. A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element. The resulting interconnection elements may be mounted to a variety of electronic components, including directly to semiconductor dies and wafers (in which case the overcoat material anchors the composite interconnection element to a terminal (or the like) on the electronic component), may be mounted to support substrates for use as interposers and may be mounted to substrates for use as probe cards or probe card inserts. The shaping tool may be an anvil (622) and a die (624), and may nick or sever successive shaped portions of the elongate elements, and the elongate element may be of an inherently hard (springy) material. Methods of fabricating interconnection elements on sacrificial substrates are described. Methods of fabricating tip structures (258) and contact tips at the end of interconnection elements are also described.
摘要:
The present invention relates to a method for making an array of metal balls. The method includes the step of generating a first pattern on a metal foil which includes a plurality of foil projections. The method also includes the step of generating a second pattern on a carrier substrate. The second pattern includes a plurality of carrier recesses that are arranged and configured to correspond with the foil projections of the first pattern. The method further includes the steps of placing the metal foil and the carrier substrate together such that the foil projections of the metal foil fit within the carrier recesses of the carrier substrate, and melting the metal foil such that the foil projections form metal balls positioned within the carrier recesses of the carrier substrate. The invention also relates to metal ball arrays constructed via the above method.
摘要:
A method for forming solder bumps on an electronic structure including the steps of first providing a mold made by a sheet of a mold material having a thickness greater than that of the solder bumps to be formed, the mold material has sufficient optical transparency so as to allow the inspection of a solder material subsequently filled into the mold cavities that are formed in the mold material, and a coefficient of thermal expansion that is substantially similar to the substrate which the mold will be mated to, forming a multiplicity of mold cavities in the sheet of mold material, filling the multiplicity of mold cavities with a solder material, cooling the mold to a temperature that is sufficient to solidify the solder material in the multiplicity of mold cavities, positioning the mold intimately with the electronic structure such that the cavities facing the structure, and heating the mold and the structure together to a temperature sufficiently high such that the solder material transfers onto the electronic structure.