摘要:
A pad is disposed on a substrate. A bump structure is disposed on the pad and electrically connected to the pad. The bump structure includes a first copper layer and a second copper layer sequentially stacked on the pad and a solder ball on the second copper layer. A first X-ray diffraction (XRD) peak intensity ratio of (111) plane to (200) plane of the first copper layer is greater than a second XRD peak intensity ratio of (111) plane to (200) plane of the second copper layer.
摘要:
An embedded die package and method of manufacture, the die package comprising a die having I/O contact pads in a passivation layer wherein the die contact pads are coupled to a first side of a feature layer by an adhesion/barrier layer, and a layer of pillars extends from a second side of the feature layer, the die, feature layer and the layer of pillars being encapsulated by a dielectric material and wherein the feature layer comprises routing lines that are individually drawn by laser exposure of photoresist under guidance of an optical imaging system for good alignment with both the I/O contact pads of the die and with the subsequently to be deposited pillars that are positioned with respect to the package edges.
摘要:
A die and a substrate are provided. The die comprises at least one integrated circuit chip, and the substrate comprises first and second subsets of conductive pillars extending at least partially therethrough. Each of the first subset of conductive pillars comprises a protrusion bump pad protruding from a surface of the substrate, and the second subset of conductive pillars each partially form a trace recessed within the surface of the substrate. The die is coupled to the substrate via a plurality of conductive bumps each extending between one of the protrusion bump pads and the die.
摘要:
A leadless package and method for manufacturing silicon based leadless QFN/SON compatible packages are described. In addition the package allows for hermetic sealing of devices while maintaining electrical and optical access. Micro-vias with feed-through metallization through a silicon structure facilitates a surface mount technology-compatible silicon package with bottom SMT pads and top surface device integration. Sloped edges on the SMT side enable solder filleting for post solder inspection. Hermetic seal can be attained for example using anodic bonding of a glass lid or using metal soldering. Metal soldering enables the use of solder bumps to provide electrical connections for the package to the lid with integrated device functionality used for sealing. Hermetically sealed silicon packages eliminates the need for an extra packaging layer required in plastic packages and provides a standard interface for enclosing one or more discrete devices.
摘要:
An electronic component includes an electrode portion and a solder portion formed on the electrode portion. In the electronic component, the electrode portion includes a first conductive portion and a second conductive portion each having different diffusion coefficient with respect to a component of the solder portion on a top surface of the electrode portion, and the solder portion is formed on the first conductive portion and the second conductive portion.
摘要:
A device with pillar-shaped components, includes a substrate; a wiring layer disposed on the substrate; and pillar-shaped components disposed on any of the substrate and the wiring layer, each of the pillar-shaped components having a bottom part connected to any of the substrate and the wiring layer, a top part opposed to the bottom part, and a lateral face part extending from the bottom part to the top part to connect the bottom part and the top part; wherein each of the pillar-shaped components includes a first pillar-shaped part formed by plating, a second pillar-shaped part formed on the first pillar-shaped part by plating, and a ring-like projection part formed on the lateral face part to project outward and extend in a circumferential direction, the ring-like projection part being formed in a position higher than a joint position between the first pillar-shaped part and the second pillar-shaped part.
摘要:
Apparatus and methods for providing solder pillar bumps. Pillar bump connections are formed on input/output terminals for integrated circuits by forming a pillar of conductive material using plating of a conductive material over terminals of an integrated circuit. A base portion of the pillar bump has a greater width than an upper portion. A cross-section of the base portion of the pillar bump may make a trapezoidal, rectangular or sloping shape. Solder material may be formed on the top surface of the pillar. The resulting solder pillar bumps form fine pitch package solder connections that are more reliable than those of the prior art.
摘要:
Sidewall protection processes are provided for Cu pillar bump technology, in which a protection structure on the sidewalls of the Cu pillar bump is formed of at least one of non-metal material layers, for example a dielectric material layer, a polymer material layer, or combinations thereof.
摘要:
Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
摘要:
Wafer processing techniques, or methods for forming semiconductor rides, are disclosed for fabricating plated pillar dies having die-level electromagnetic interference (EMI) shield layers. In embodiments, the method includes depositing a metallic seed layer over a semiconductor wafer and contacting die pads thereon. An electroplating process is then performed to compile plated pillars on the metallic seed layer and across the semiconductor wafer. Following electroplating, selected regions of the metallic seed layer are removed to produce electrical isolation gaps around a first pillar type, while leaving intact portions of the metallic seed layer to yield a wafer-level EMI shield layer. The semiconductor wafer is separated into singulated plated pillar dies, each including a die-level EMI shield layer and plated pillars of the first pillar type electrically isolated from the EMI shield layer.