Abstract:
Methods of forming an interconnection line pattern using a screen printing technique. The method includes preparing a substrate having unevenness, aligning a stencil mask on the substrate, and printing a paste including materials for forming the interconnection line pattern on a convex portion of the unevenness formed on the substrate.
Abstract:
Methods and apparatus to protect fragile dielectric layers in a semiconductor chip are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first polymer layer over a conductor pad of a semiconductor chip where the conductor pad has a first lateral dimension. An underbump metallization structure is formed on the first polymer layer and in ohmic contact with the conductor pad. The underbump metallization structure has a second lateral dimension greater than the first lateral dimension. A second polymer layer is formed on the first polymer layer with a first opening exposing at least a portion of the underbump metallization structure.
Abstract:
Methods of curing a polymer layer on a substrate using variable microwave frequency are provided herein. In some embodiments, methods of curing a polymer layer on a substrate using variable microwave frequency include (a) forming a first thin-film polymer layer on a substrate, the first thin-film polymer layer including at least one first base dielectric material and at least one microwave tunable material, (b) applying a variable frequency microwave energy to the substrate and the first thin-film polymer layer to heat the substrate and the first thin-film polymer layer to a first temperature, and (c) adjusting the variable frequency microwave energy applied to the substrate and the first thin-film polymer layer to tune at least one material property of the first thin-film polymer layer.
Abstract:
A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
Abstract:
An electronic component mounting structure includes a substrate having a terminal, an electronic component having an active face, an electrode that is formed on the active face of the electronic component, a base resin that is formed on the active face, a first opening that is formed at the base resin to expose the electrode, and a conductive film that covers a part of a top surface of the base resin and that is electrically connected to the electrode via the first opening. Because the base resin is bonded to the substrate, the bonding strength between the conductive film located on the top surface of the base resin and the terminal of the substrate is increased. Therefore, the reliability of electrical connection between the conductive film and the terminal is improved.
Abstract:
A method of manufacturing an electronic package is provided, in which an electronic element is disposed on a carrier structure; a heat dissipation body of a heat dissipation structure is disposed on the electronic element via a heat dissipation material; the heat dissipation material is cured; supporting legs of the heat dissipation structure are fixed on the carrier structure via a bonding layer; and the bonding layer is cured. Therefore, the heat dissipation structure can be effectively fixed to the heat dissipation material and the bonding layer by completing the arrangements of the heat dissipation material and the bonding layer in stages.
Abstract:
Provided is a cured film of high elongation, low stress, and high adhesion to metal copper. The cured film is formed by curing a photosensitive resin composition, wherein the photosensitive resin comprises a polyhydroxyamide, and wherein the rate of ring-closure of the polyhydroxyamide in the cured film is not more than 10%.
Abstract:
A contact region for a semiconductor substrate is disclosed. Embodiments can include forming a seed metal layer having an exposed solder pad region on the semiconductor substrate and forming a first metal layer on the seed metal layer. In an embodiment, a solderable material, such as silver, can be formed on the exposed solder pad region prior to forming the first metal layer. Embodiments can include forming a solderable material on the exposed solder pad region after forming the first metal layer. Embodiments can also include forming a plating contact region on the seed metal layer, where the plating contact region allows for electrical conduction during a plating process.
Abstract:
A surface mount packaging connector includes an elastic conductor, an interconnect pad, and a conductive layer. The elastic conductor has a top surface. The interconnect pad is electrically coupled to the elastic conductor. The top surface of the elastic conductor is arranged away from the interconnect pad. The conductive layer is on the top surface of the elastic conductor. The conductive layer provides an increased electrically conductive surface area and may also be a solderable surface.
Abstract:
An electronic component mounting structure includes: an electronic component including a plurality of bump electrodes that includes a base resin provided on an active face of the electronic component and a plurality of conductive films that cover a part of a surface of the base resin, expose an area excluding the part of the surface, and are electrically coupled to a plurality of electrode terminals provided on the active face; and a substrate including a plurality of terminals. In the structure, the electronic component is mounted on the substrate, and the base resin includes: a first opening surrounding the plurality of the electrode terminals; a connection portion in which a part of one ends of the plurality of the conductive films that are drawn out on the surface of the base resin is disposed, the other ends of the conductive films being coupled to the electrode terminals; and a bonding portion that is bonded to the substrate, and is formed in an area excluding the first opening and the connection portion, and an elastic deformation of the base resin at the connection portion allows the bonding portion to bond the substrate so as to maintain the conductive films and the plurality of the terminals on the substrate in a bonded state.