Abstract:
A semiconductor device includes a first substrate, an insulation layer, and a first electrode. The first substrate contains a first semiconductor material. The insulation layer includes a first surface, a second surface, and a third surface. The first electrode includes a fourth surface, a fifth surface, and a sixth surface, and contains a porous first conductive material. The second surface and the fifth surface configure the same surface. The third surface faces the sixth surface. A distance between the first surface and the first substrate is less than a distance between the second surface and the first substrate. A distance between the fourth surface and the first substrate is less than a distance between the fifth surface and the first substrate.
Abstract:
A device includes a first semiconductor chip including a first face, wherein a first contact pad is arranged over the first face. The device further includes a second semiconductor chip including a first face, wherein a first contact pad is arranged over the first face, wherein the first semiconductor chip and the second semiconductor chip are arranged such that the first face of the first semiconductor chip faces in a first direction and the first face of the second semiconductor chip faces in a second direction opposite to the first direction. The first semiconductor chip is located laterally outside of an outline of the second semiconductor chip.
Abstract:
A method for manufacturing a display device includes preparing a circuit board including a drive circuit for driving a LED chip, forming a connecting electrode on the circuit board, forming an adhesive layer on the connecting electrode, adhering a terminal electrode of the LED chip on the adhesive layer and joining the connecting electrode and the terminal electrode by irradiating a laser light. The adhesive layer may be formed only on a upper surface of the connecting electrode.
Abstract:
Provided is a method of manufacturing a semiconductor device including a step of testing every one of through-electrodes. A second probe test is conducted to check an electrical coupling state between a plurality of copper post bumps formed on the side of the surface of a wafer and electrically coupled to a metal layer and a plurality of bumps formed on the side of the back surface of the wafer and electrically coupled to the metal layer (also another metal layer) via a plurality of through-electrodes by probing to each of the bumps on the side of the back surface while short-circuiting between the copper post bumps (electrodes). By this test, conduction between the bumps (electrodes) on the back surface side is checked.
Abstract:
Embodiments of the present disclosure are directed towards die-to-die bonding and associated integrated circuit (IC) package configurations. In one embodiment, a package assembly includes a package substrate having a solder resist layer disposed on a first side and a second side disposed opposite to the first side, a first die mounted on the first side and having an active side that is electrically coupled with the package substrate by one or more first die-level interconnects and a second die bonded with the active side of the first die using one or more second die-level interconnects, wherein at least a portion of the second die is disposed in a cavity that extends into the solder resist layer. Other embodiments may be described and/or claimed.
Abstract:
A contact lens having a thin silicon chip integrated therein is provided along with methods for assembling the silicon chip within the contact lens. In an aspect, a method includes creating a plurality of lens contact pads on a lens substrate and creating a plurality of chip contact pads on a chip. The method further involves applying assembly bonding material to the each of the plurality of lens contact pads or chip contact pads, aligning the plurality of lens contact pads with the plurality of chip contact pads, bonding the chip to the lens substrate via the assembly bonding material using flip chip bonding, and forming a contact lens with the lens substrate.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
Method for temporarily attaching a substrates to a rigid carrier is described which includes forming a sacrificial layer of a thermally-decomposable polymer, e.g., poly(alkylene carbonate), and bonding the flexible substrate to the rigid carrier with the sacrificial layer positioned therebetween. Electronic components and/or circuits may then be fabricated or other semiconductor processing steps employed (e.g., backgrinding) on the attached substrate. Once fabrication is completed, the substrate may be detached from the rigid carrier by heating the assembly to decompose the sacrificial layer.
Abstract:
An optically clear adhesive, a dicing die bonding film, and a semiconductor device, the optically clear adhesive including a curing agent; and an acrylic copolymer, the acrylic copolymer including an alkyl group, a hydroxyl group, and at least one of a phosphate group and a silane group.
Abstract:
A contact lens having a thin silicon chip integrated therein is provided along with methods for assembling the silicon chip within the contact lens. In an aspect, a method includes creating a plurality of lens contact pads on a lens substrate and creating a plurality of chip contact pads on a chip. The method further involves applying assembly bonding material to the each of the plurality of lens contact pads or chip contact pads, aligning the plurality of lens contact pads with the plurality of chip contact pads, bonding the chip to the lens substrate via the assembly bonding material using flip chip bonding, and forming a contact lens with the lens substrate.