摘要:
A method for coating of a first substrate with a first diffusion bond layer by deposition of a first material which forms the first diffusion bond layer on a first surface of the first substrate such that the first diffusion bond layer forms a grain surface with an average grain diameter H parallel to the first surface smaller than 1 μm. The invention further relates to a method for bonding of a first substrate which has been coated as described above to a second substrate which has a second diffusion bond layer, the method of the bonding comprising the following steps: bring a first diffusion bond layer of a first substrate into contact with a second diffusion bond layer of a second substrate, pressing the substrates together to form a permanent metal diffusion bond between the first and second substrates.
摘要:
A method for coating of a first substrate with a first diffusion bond layer by deposition of a first material which forms the first diffusion bond layer on a first surface of the first substrate such that the first diffusion bond layer forms a grain surface with an average grain diameter H parallel to the first surface smaller than 1 μm. The invention further relates to a method for bonding of a first substrate which has been coated as described above to a second substrate which has a second diffusion bond layer, the method of the bonding comprising the following steps: bring a first diffusion bond layer of a first substrate into contact with a second diffusion bond layer of a second substrate, pressing the substrates together to form a permanent metal diffusion bond between the first and second substrates.
摘要:
A bonding structure is provided, wherein the bonding structure includes a first substrate, a second substrate, a first adhesive layer, a second adhesive layer, and a silver feature. The second substrate is disposed opposite to the first substrate. The first adhesive layer is disposed on the first substrate. The second adhesive layer is disposed on the second substrate and opposite the first adhesive layer. The silver feature is disposed between the first adhesive layer and the second adhesive layer. The silver feature includes a silver nano-twinned structure that includes twin boundaries that are arranged in parallel. The parallel-arranged twin boundaries include 90% or more [111] crystal orientation.
摘要:
There is provided a method for manufacturing an electronic device including a substrate of semiconductor material, an intermediate portion, and a silicon carbide layer, the method including transferring the silicon carbide layer from a first electronic element onto a face of a second electronic element including the substrate, the transfer including: providing the first element including a primary silicon carbide-based layer, a first diffusion barrier portion, and a first metal layer; providing the second element including the substrate, a second diffusion barrier portion, and a second metal layer; and bonding an exposed face of each of the first and the second metal layers, the first and the second metal layers being formed of tungsten, the first and the second portions being formed of at least one tungsten silicide layer, and the second portion, the second metal layer, the first metal layer, and the first portion form the intermediate portion.
摘要:
An electronic component mounting structure includes a substrate having a terminal, an electronic component having an active face, an electrode that is formed on the active face of the electronic component, a base resin that is formed on the active face, a first opening that is formed at the base resin to expose the electrode, and a conductive film that covers a part of a top surface of the base resin and that is electrically connected to the electrode via the first opening. Because the base resin is bonded to the substrate, the bonding strength between the conductive film located on the top surface of the base resin and the terminal of the substrate is increased. Therefore, the reliability of electrical connection between the conductive film and the terminal is improved.
摘要:
At least one metal adhesion layer is formed on at least a Cu surface of a first device wafer. A second device wafer having another Cu surface is positioned atop the Cu surface of the first device wafer and on the at least one metal adhesion layer. The first and second device wafers are then bonded together. The bonding includes heating the devices wafers to a temperature of less than 400° C., with or without, application of an external applied pressure. During the heating, the two Cu surfaces are bonded together and the at least one metal adhesion layer gets oxygen atoms from the two Cu surfaces and forms at least one metal oxide bonding layer between the Cu surfaces.
摘要:
A semiconductor device including a semiconductor element, an electrode pad formed on the semiconductor element, and a bump electrode conductively connected to the electrode pad which includes a resin bump formed on an active face of the semiconductor element and a conductive layer provided from the electrode pad to the surface of the resin bump, the conductive layer and the resin bump being arranged without adhesion.
摘要:
A semiconductor device including a semiconductor element, an electrode pad formed on the semiconductor element, and a bump electrode conductively connected to the electrode pad which includes a resin bump formed on an active face of the semiconductor element and a conductive layer provided from the electrode pad to the surface of the resin bump, the conductive layer and the resin bump being arranged without adhesion.
摘要:
At least one metal adhesion layer is formed on at least a Cu surface of a first device wafer. A second device wafer having another Cu surface is positioned atop the Cu surface of the first device wafer and on the at least one metal adhesion layer. The first and second device wafers are then bonded together. The bonding includes heating the devices wafers to a temperature of less than 400° C., with or without, application of an external applied pressure. During the heating, the two Cu surfaces are bonded together and the at least one metal adhesion layer gets oxygen atoms from the two Cu surfaces and forms at least one metal oxide bonding layer between the Cu surfaces.
摘要:
At least one metal adhesion layer is formed on at least a Cu surface of a first device wafer. A second device wafer having another Cu surface is positioned atop the Cu surface of the first device wafer and on the at least one metal adhesion layer. The first and second device wafers are then bonded together. The bonding includes heating the devices wafers to a temperature of less than 400° C., with or without, application of an external applied pressure. During the heating, the two Cu surfaces are bonded together and the at least one metal adhesion layer gets oxygen atoms from the two Cu surfaces and forms at least one metal oxide bonding layer between the Cu surfaces.