摘要:
A method for forming a semiconductor device includes forming device regions in a semiconductor substrate having a first side and a second side. The device regions are formed adjacent the first side. The method further includes forming a seed layer over the first side of the semiconductor substrate, and forming a patterned resist layer over the seed layer. A contact pad is formed over the seed layer within the patterned resist layer. The method further includes removing the patterned resist layer after forming the contact pad to expose a portion of the seed layer underlying the patterned resist layer, and forming a protective layer over the exposed portion of the seed layer.
摘要:
The present invention provides a bonding wire capable of simultaneously satisfying ball bonding reliability and wedge bondability required of bonding wires for memories, the bonding wire including a core material containing one or more of Ga, In, and Sn for a total of 0.1 to 3.0 at % with a balance being made up of Ag and incidental impurities; and a coating layer formed over a surface of the core material, containing one or more of Pd and Pt, or Ag and one or more of Pd and Pt, with a balance being made up of incidental impurities, wherein the coating layer is 0.005 to 0.070 μm in thickness.
摘要:
There is provided a Cu bonding wire having a Pd coating layer on a surface thereof, that improves bonding reliability of a ball bonded part in a high-temperature and high-humidity environment and is suitable for on-vehicle devices.The bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface of the Cu alloy core material, and the bonding wire contains In of 0.011 to 1.2% by mass and has the Pd coating layer of a thickness of 0.015 to 0.150 μm. With this configuration, it is able to increase the bonding longevity of a ball bonded part in a high-temperature and high-humidity environment, and thus to improve the bonding reliability. When the Cu alloy core material contains one or more elements of Pt, Pd, Rh and Ni in an amount, for each element, of 0.05 to 1.2% by mass, it is able to increase the reliability of a ball bonded part in a high-temperature environment of 175° C. or more. When an Au skin layer is further formed on a surface of the Pd coating layer, wedge bondability improves.
摘要:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 μm2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%. During the drawing step, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.
摘要:
Provided is a bonding wire capable of reducing the occurrence of defective loops. The bonding wire includes: a core material which contains more than 50 mol % of a metal M; an intermediate layer which is formed over the surface of the core material and made of Ni, Pd, the metal M, and unavoidable impurities, and in which the concentration of the Ni is 15 to 80 mol %; and a coating layer formed over the intermediate layer and made of Ni, Pd and unavoidable impurities. The concentration of the Pd in the coating layer is 50 to 100 mol %. The metal M is Cu or Ag, and the concentration of Ni in the coating layer is lower than the concentration of Ni in the intermediate layer.
摘要:
A bonding wire according to the invention contains a core having a surface and a coating layer which is at least partially superimposed over the surface of the core. The core contains a core main component selected from copper and silver and the coating layer contains a coating component selected from palladium, platinum, gold, rhodium, ruthenium, osmium and iridium. The coating layer is applied on the surface of the core by depositing a film of a liquid containing a coating component precursor onto a wire core precursor and heating the deposited film to decompose the coating component precursor into a metallic phase.
摘要:
The present invention relates to a liquid-phase sintering composition containing low-molecular organic auxiliary agents, at least one silver salt, silver particles and one further metal solid material, characterized in that the further solid material is particulate and comprises tin.
摘要:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 μm2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%. During the drawing step, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.
摘要:
A method for forming a semiconductor device includes forming device regions in a semiconductor substrate having a first side and a second side. The device regions are formed adjacent the first side. The method further includes forming a seed layer over the first side of the semiconductor substrate, and forming a patterned resist layer over the seed layer. A contact pad is formed over the seed layer within the patterned resist layer. The method further includes removing the patterned resist layer after forming the contact pad to expose a portion of the seed layer underlying the patterned resist layer, and forming a protective layer over the exposed portion of the seed layer.