Abstract:
There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of atomic % or more formed on a surface of the core material. The bonding wire is characterized in that:
in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.0 or less where X is defined as an average value of a ratio of a Pd concentration CPd (atomic %) to an Ni concentration CNi (atomic %), CPd/CNi, for all measurement points in the coating layer, the total number of measurement points in the coating layer whose absolute deviation from the average value X is or less is 50% or more relative to the total number of measurement points in the coating layer, and the bonding wire satisfies at least one of following conditions (i) and (ii): (i) a concentration of In relative to the entire wire is 1 ppm by mass or more and 100 ppm by mass or less; and (ii) a concentration of Ag relative to the entire wire is 1 ppm by mass or more and 500 ppm by mass or less.
Abstract:
A wire structure, which may be configured for a semiconductor device, is disclosed. The wire may include an elongate flexible core formed of a conductor material and a cladding layer covering an outer surface of the core. The cladding layer may be a conductor. In various aspects the cladding layer and core have different grain sizes. An average grain size of the core material may be several orders of magnitude greater than an average grain size of the cladding layer material. The cladding layer may be an alloy having a varying concentration of a minor component across its thickness. Methods of forming a wire structure are also disclosed.
Abstract:
Resilient contact structures provide electrical interconnection between a semiconductor die and another electronic component. Multilayered packaging may be formed on the semiconductor die, and the resilient contact structures may be formed on portions of one or more of the layers. Heat dissipating structures may be provided on the die.
Abstract:
An interposer includes a substrate having opposing surfaces. Conductive terminals are disposed on both surfaces, and conductive terminals on one surface are electrically connected to conductive terminals on the opposing surface. Elongate, springable, conducive interconnect elements are fixed to conductive terminals on both surfaces.
Abstract:
A method for manufacturing raised contacts on the surface of an electronic component includes bonding one end of a wire to an area, such as a terminal, of the electronic component, and shaping the wire into a wire stem configuration (including straight, bent two-dimensionally, bent three-dimensionally). A coating, having one or more layers, is deposited on the wire stem to (i) impart resilient mechanical characteristics to the shaped wire stem and (ii) more securely attach ("anchor") the wire stem to the terminal. Gold is one of several materials described that may be selected for the wire stem. A variety of materials for the coating, and their mechanical properties, are described. The wire stems may be shaped as loops, for example originating and terminating on the same terminal of the electronic component, and overcoated with solder. The use of a barrier layer to prevent unwanted reactions between the wire stem and its environment (e.g., with a solder overcoat) is described. Bonding a second end of the wire to a sacrificial member, then removing the sacrificial member, is described. A plurality of wire stems may be formed on the surface of the electronic component, from different levels thereon, and may be severed so that their tips are coplanar with one another. Many wire stems can be mounted, for example in an array pattern, to one or to both sides of electronic components including semiconductor dies and wafers, plastic and ceramic semiconductor packages, and the like.
Abstract:
There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic% or more formed on a surface of the core material. The bonding wire is characterized in that:
in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.0 or less where X is defined as an average value of a ratio of a Pd concentration CPd (atomic%) to an Ni concentration CNi (atomic%), CPd/CNi, for all measurement points in the coating layer, the total number of measurement points in the coating layer whose absolute deviation from the average value X is 0.3X or less is 50% or more relative to the total number of measurement points in the coating layer, and the bonding wire satisfies at least one of following conditions (i) and (ii):
(i) a concentration of In relative to the entire wire is 1 ppm by mass or more and 100 ppm by mass or less; and (ii) a concentration of Ag relative to the entire wire is 1 ppm by mass or more and 500 ppm by mass or less.
Abstract:
The present invention provides a bonding wire which can satisfy bonding reliability, spring performance, and chip damage performance required in high-density packaging. A bonding wire contains one or more of In, Ga, and Cd for a total of 0.05 to 5 at %, and a balance being made up of Ag and incidental impurities.
Abstract:
An electronic assembly comprising an electronic substrate and a plurality of conductive interconnection elements. The substrate has a first side having a plurality of terminals. Each interconnection element has a base secured to a respective one of the terminals, a contact region distant from the electronic substrate, and an elongate freestanding section which can bend when pressure is applied to the contact region.
Abstract:
An electronic assembly. The electronic assembly includes a first substrate which has a first set of contact pads and a second substrate which has a second set of contact pads. A plurality of elongate, springable interconnection elements are located between the first substrate and the second substrate. Each of the plurality of elongate, springable interconnect elements is free standing and has a portion permanently attached to a respective contact pad of the first set of contact pads and has a second portion contacting a respective contact pad of the second set of contact pads. The first and the second substrates are brought into a fixed relationship relative to one another.
Abstract:
A band-shaped and/or filamentary material, having a phosphorus containing metal and/or metal alloy inner layer such as phosphor bronze, deoxidized copper or other similar phosphorus containing material, and a lead alloy outer layer, particularly a lead-tin alloy, wherein the phosphorus content of the inner layer is between 0.03 and 0.13 weight percent. In the preferred embodiment, the amount of phosphorus in the inner layer is between 0.05 and 0.06 weight percent. Electrical conductors and electronic components of this band-shaped and/or filamentary material are also disclosed.