Abstract:
A device includes a substrate including an electrically insulating core, a first electrically conductive material arranged over a first main surface of the substrate, and a second electrically conductive material arranged over a second main surface of the substrate opposite to the first main surface. The device further includes an electrically conductive connection extending from the first main surface to the second main surface and electrically coupling the first electrically conductive material and the second electrically conductive material, a first semiconductor chip arranged over the first main surface and electrically coupled to the first electrically conductive material, and a second semiconductor chip arranged over the second main surface and electrically coupled to the second electrically conductive material.
Abstract:
A connecting wire having an electrically conductive core, preferably provided by a wire or ribbon, with a coating provided on the surface of the core. The coating is composed of a nitrogen-containing tantalum alloy or tungsten alloy, and also optionally contains silicon as an additional alloy component. A manufacturing method for producing such a connecting wire involves passing a wire or ribbon core past a coating source to apply the coating.
Abstract:
Provided is a bonding structure of a bonding wire and a method for forming the same which can solve problems of conventional technologies in practical application of a multilayer copper wire, improve the formability and bonding characteristic of a ball portion, improve the bonding strength of wedge connection, and have a superior industrial productivity. A bonding wire mainly composed of copper, and a concentrated layer where the concentration of a conductive metal other than copper is high is formed at a ball bonded portion. The concentrated layer is formed in the vicinity of the ball bonded portion or at the interface thereof. An area where the concentration of the conductive metal is 0.05 to 20 mol % has a thickness greater than or equal to 0.1 μm, and it is preferable that the concentration of the conductive metal in the concentrated layer should be five times as much as the average concentration of the conductive metal at the ball bonded portion other than the concentrated layer.
Abstract:
A package is disclosed. The package includes a premolded substrate having a leadframe structure, a first device attached to the leadframe structure, and a molding material covering at least part of the leadframe structure and the first device. It also includes a second device attached to the premolded substrate.
Abstract:
The device of this invention includes a semiconductor die attached to a bare copper lead frame and electrically coupled to a lead by a metal wire coated with a metallic material. The device would function similarly to devices where the lead frames were coated with other metallic materials, but at lower costs because instead of plating the lead frame the wire is plated. The wire can be either gold or aluminum. When the wire is gold, the coating may be silver or other suitable metallic materials. When the wire is aluminum, the coating may be nickel, palladium, or other suitable metals.
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
Abstract:
A semiconductor die package. The semiconductor die package includes a leadframe structure, a first semiconductor die comprising a first surface attached to a first side of the leadframe structure, and a second semiconductor die attached to a second side of the leadframe structure. The second semiconductor die comprises an integrated circuit die. A housing material is formed over at least a portion of the leadframe structure, the first semiconductor die, and the second semiconductor die. An exterior surface of the molding material is substantially coplanar with the first surface of the semiconductor die.
Abstract:
A semiconductor device with a chip having at least one metallic bond pad (101) over weak insulating material (102). In contact with this bond pad is a flattened metal ball (104) made of at least 99.999% pure metal such as gold, copper, or silver. The diameter (104a) of the flattened ball is less than or equal to the diameter (103a) of the bond pad. A wire (110) is connected to the bond pad so that the wire has a thickened portion (111) conductively attached to the flattened metal ball. The wire is preferably made of composed metal such as gold alloy. The composition of the flattened ball is softer than the wire. This softness of the flattened ball protects the underlying insulator against damage caused by pressure or stress, when the composed ball is attached.
Abstract:
A bonding wire comprising a core and a coating layer formed on the core, wherein the coating layer is formed from a metal having a higher melting point than the core, and further has at least one of the following characteristics; 1. the wet contact angle with the coating layer when the core is melted is not smaller than 20 degrees; 2. when the bonding wire is hung down with its end touching a horizontal surface, and is cut at a point 15 cm above the end and thus let drop onto the horizontal surface, the curvature radius of the formed arc is 35 mm or larger; 3. the 0.2% yield strength is not smaller than 0.115 mN/μm2 but not greater than 0.165 mN/μm2; or 4. the Vickers hardness of the coating layer is 300 or lower.
Abstract translation:一种接合线,其包括芯和形成在所述芯上的涂层,其中所述涂层由具有比所述芯更高的熔点的金属形成,并且还具有以下特征中的至少一个; 当芯熔化时与涂层的湿接触角不小于20度; 2.当接合线悬挂时,其端部接触水平表面,并在端部上方15厘米处切割,因此落在水平面上,所形成的弧的曲率半径为35毫米或更大; 0.2%的屈服强度不小于0.115mN / m 2,但不大于0.165mN / m 2。 或4.涂层的维氏硬度为300以下。
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.