摘要:
A package structure includes a mounting pad having a mounting surface; a semiconductor chip having a magnetic device, a first magnetic field shielding, and a molding. The semiconductor chip comprises a first surface perpendicular to a thickness direction of the semiconductor chip, a second surface opposite to the first surface, wherein the second surface is attached to the mounting surface of the mounting pad, and a third surface connecting the first surface and the second surface. The first magnetic field shielding including a plurality of segments laterally at least partially surrounding the semiconductor chip, wherein a bottom surface of the first magnetic field shielding is attached to the mounting surface of the mounting pad, wherein the mounting surface comprises first portion free from overlapping with the first magnetic field shielding from a top view perspective. The molding surrounding the mounting pad and in direct contact with the mounting surface.
摘要:
An improvement is achieved in the reliability of a semiconductor device. After a resin sealing portion is formed to seal a die pad, a semiconductor chip mounted over the die pad, a plurality of leads, and a plurality of wires electrically connecting a plurality of pad electrodes of the semiconductor chip with the leads, the resin sealing portion and the leads are cut with a rotary blade to manufacture the semiconductor device. In the semiconductor device, at least a portion of each of first and second leads is exposed from a lower surface of the sealing portion. End surfaces of the first and second leads as the respective cut surfaces thereof are exposed from each of side surfaces of the sealing portion as the cut surfaces of the resin sealing portion. The distance between a lower side of the end surface of the first lead and an upper surface of the sealing portion is smaller than the distance between an upper side of the end surface of the second lead adjacent thereto and the upper surface of the sealing portion.
摘要:
A highly reliable semiconductor device capable of heavy current conduction and high temperature operation has a module structure in which a semiconductor chip and a circuit pattern are electrically connected via a wire. A front surface metal film is formed on a front surface electrode of the chip, and the wire is bonded to the front surface metal film by wire bonding. The chip has a front surface electrode on the front surface of an Si substrate or an SiC substrate, and has a rear surface substrate on the rear surface thereof. The front surface metal film is a Ni film or a Ni alloy film of having a thickness ranging from 3 μm to 7 μm. The wire is an Al wire having an increased recrystallizing temperature and improved strength due to controlling the crystal grain sizes before wire bonding to a range of 1 μm to 20 μm.
摘要:
Properties of a semiconductor device are improved. A semiconductor device is configured so as to have a protective film provided over an interconnection and having an opening, and a plating film provided in the opening. A slit is provided in a side face of the opening, and the plating film is also disposed in the slit. Thus, the slit is provided in the side face of the opening, and the plating film is also grown in the slit. This results in a long penetration path of a plating solution during subsequent formation of the plating film. Hence, a corroded portion is less likely to be formed in the interconnection (pad region). Even if the corroded portion is formed, a portion of the slit is corroded prior to the interconnection (pad region) at a sacrifice, making it possible to suppress expansion of the corroded portion into the interconnection (pad region).
摘要:
A technique is provided that can prevent cracking of a protective film in the uppermost layer of a semiconductor device and improve the reliability of the semiconductor device. Bonding pads formed over a principal surface of a semiconductor chip are in a rectangular shape, and an opening is formed in a protective film over each bonding pad in such a manner that an overlapping width of the protective film in a wire bonding region of each bonding pad becomes wider than an overlapping width of the protective film in a probe region of each bonding pad.
摘要:
Systems, apparatuses, and methods related to the design, fabrication, and manufacture of gallium arsenide (GaAs) integrated circuits are disclosed. Copper can be used as the contact material for a GaAs integrated circuit. Metallization of the wafer and through-wafer vias can be achieved through copper plating processes disclosed herein. Direct die solder (DDS) attach can be achieved by use of electroless nickel plating of the copper contact layer followed by a palladium flash. GaAs integrated circuits can be singulated, packaged, and incorporated into various electronic devices.
摘要:
Properties of a semiconductor device are improved. A semiconductor device is configured so as to have a protective film provided over an interconnection and having an opening, and a plating film provided in the opening. A slit is provided in a side face of the opening, and the plating film is also disposed in the slit. Thus, the slit is provided in the side face of the opening, and the plating film is also grown in the slit. This results in a long penetration path of a plating solution during subsequent formation of the plating film. Hence, a corroded portion is less likely to be formed in the interconnection (pad region). Even if the corroded portion is formed, a portion of the slit is corroded prior to the interconnection (pad region) at a sacrifice, making it possible to suppress expansion of the corroded portion into the interconnection (pad region).
摘要:
A semiconductor device in which reliability of a bonding pad to which a conductive wire is bonded is achieved. A bonding pad having an OPM structure is formed of an Al—Cu alloy film having a Cu concentration of 2 wt % or more. By increasing the Cu concentration, the Al—Cu alloy film forming the bonding pad is hardened. Therefore, the bonding pad is difficult to be deformed by impact in bonding of a Cu wire, and deformation of an OPM film as following the deformation of the bonding pad can be reduced. In this manner, concentration of a stress on the OPM film caused by the impact from the Cu wire can be reduced, and therefore, the breakage of the OPM film can be prevented.
摘要:
A method of forming a wire interconnect structure includes the steps of: (a) forming a wire bond at a bonding location on a substrate using a wire bonding tool; (b) extending a length of wire, continuous with the wire bond, to another location; (c) pressing a portion of the length of wire against the other location using the wire bonding tool; (d) moving the wire bonding tool, and the pressed portion of the length of wire, to a position above the wire bond; and (e) separating the length of wire from a wire supply at the pressed portion, thereby providing a wire interconnect structure bonded to the bonding location.
摘要:
The present invention provides systems and methods for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device.