Abstract:
A light emitting device mount includes a positive lead terminal, and a negative lead terminal. Each of the positive and negative lead terminal includes a first main surface, a second main surface, and an end surface. The end surface is provided between the first main surface and the second main surface. The end surface includes a first recessed surface area and a second recessed surface area. The first recessed surface area is extending from a first point of the first main surface in cross section. The second recessed surface area is extending from a second point of the second main surface in cross section. The first and second recessed surface areas define a protruding portion protruding outwardly.
Abstract:
A mount includes a terminal, and a resin portion. The terminal includes a first surface, a second surface, and an end surface having first and second recessed areas that are extend from the first and second surfaces, respectively. The resin portion is integrally formed with the terminal, and at least partially covers the end surface so that the first and second surfaces are at least partially exposed. The resin portion forms a recessed part to accommodate the light emitting device. The second recessed area includes a closest point that is positioned closest to the first surface, and an extension part that extends outward of the closest point and toward the second surface side. The extension part is formed at least on opposing end surfaces of the pair of positive and negative lead terminal. The first recessed area is arranged on the exterior side relative to the closest point.
Abstract:
A light emitting device mount includes a positive lead terminal, a negative lead terminal, and a resin portion. Each of the positive and negative lead terminal includes a first main surface, a second main surface, and an end surface. The end surface is provided between the first main surface and the second main surface. The end surface includes a first recessed surface area and a second recessed surface area. The first recessed surface area is extending from a first point of the first main surface in cross section. The second recessed surface area is extending from a second point of the second main surface in cross section. The first and second recessed surface areas define a protruding portion protruding outwardly. The resin portion is positioned at least between the end surface of the positive lead terminal and the end surface of the negative lead terminal.
Abstract:
A copper plated aluminum wire with improvement in adhesive properties is fabricated by a method which includes a displacement step of forming a thin layer of a metal by displacement on a surface of an aluminum or aluminum alloy conductor, an electroplating step of coating a surface of the thin layer continuously with copper layers by electroplating to have a copper coated aluminum conductor, and a thermal diffusion step of heat treating the copper coated aluminum conductor at a temperature of 120° C. to 600° C. under an inert gas atmosphere for thermal diffusion. A plated aluminum wire is provided having an anchor metal layer formed by displacement plating, a low thermally conductive metal layer formed by electroplating, and a high electrically conductive metal layer formed by electroplating in which all of the layers are sequentially deposited on an outer surface of an aluminum or aluminum alloy conductor. A plated aluminum wire is provided having an anchor metal layer formed by displacement plating and a high electrically conductive metal layer formed by electroplating in which both of the layers are sequentially deposited on an outer surface of an aluminum or aluminum alloy conductor. A composite lightweight copper plated wire is provided having an electrically conductive metal layer that is deposited by electroplating on an outer surface of an anchor metal layer provided on an aluminum conductor.
Abstract:
There is provided a novel Al wiring material that achieves both of a suppression of chip damage and a thermal shock resistance. In aspect 1, the Al wiring material includes an Al core material and an Al coating layer formed on a surface of the Al core material, and satisfies 1.2≤H1h/H1s where H1h is a Vickers hardness of the Al core material (Hv) and H1s is a Vickers hardness of the Al coating layer (Hv). In aspect 2, the Al wiring material includes an Al core material and an Al coating layer formed on a surface of the Al core material, and satisfies 1.2≤H2h/H2s where H2s is a Vickers hardness of the Al core material (Hv) and H2h is a Vickers hardness of the Al coating layer (Hv).
Abstract:
There is provided a bonding wire for semiconductor devices that exhibits a favorable bondability even when being applied to wedge bonding at the room temperature, and also achieves an excellent bond reliability. The bonding wire includes a core material of Cu or Cu alloy (hereinafter referred to as a “Cu core material”), and a coating containing a noble metal formed on a surface of the Cu core material. A concentration of Cu at a surface of the wire is 30 to 80 at%.
Abstract:
In order to provide an electronic component of a high frequency current suppression type, which can completely suppress a high frequency current to prevent an electromagnetic interference from occurring even when it is used at a high frequency, and a bonding wire for the same, the semiconductor integrated circuit device (IC) (17) operates at a high speed in using at a high frequency band, and a predetermined number of terminals (19) are provided with a high frequency current suppressor (21) for attenuating a high frequency current passing through the terminals themselves. This high frequency current suppressor (21) is a thin film magnetic substance having a range from 0.3 to 20 (nullm) in thickness, and is disposed on the entire surface of each terminal (19), covering a mounting portion to be mounted on a printed wiring circuit board (23) for mounting IC (17) and an edge including a connecting portion to a conductive pattern (25) disposed on the printed wiring circuit board (23). When the top end is connected with the conductive pattern (25) by means of a solder (27) in mounting the printed wiring circuit board (23) of IC (17), the vicinity of the mounting portion has conductivity in a using frequency band, which is less than a few tens MHz.
Abstract:
A light emitting apparatus includes a positive lead terminal and a negative lead terminal, each of which includes a first main surface, a second main surface, and an end surface including a first recessed surface area extending from a first point of the first main surface in cross section, and a second recessed surface area extending from a second point of the second main surface in cross section. A distance between a first part of the end surface of the positive lead terminal and a second part of the end surface of the negative lead terminal than a first distance between the first points of the positive lead terminal and the negative lead terminal and a second distance between the second points of the positive lead terminal and the negative lead terminal. The first part and the second part are separated from the first point and the second point.
Abstract:
A light emitting device mount includes a positive lead terminal, a negative lead terminal, and a resin portion. Each of the positive and negative lead terminal includes a first main surface, a second main surface, and an end surface. The end surface is provided between the first main surface and the second main surface. The end surface includes a first recessed surface area and a second recessed surface area. The first recessed surface area is extending from a first point of the first main surface in cross section. The second recessed surface area is extending from a second point of the second main surface in cross section. The first and second recessed surface areas define a protruding portion protruding outwardly. The resin portion is positioned at least between the end surface of the positive lead terminal and the end surface of the negative lead terminal.
Abstract:
A bonding wire comprising a core and a coating layer formed on the core, wherein the coating layer is formed from a metal having a higher melting point than the core, and further has at least one of the following characteristics; 1. the wet contact angle with the coating layer when the core is melted is not smaller than 20 degrees; 2. when the bonding wire is hung down with its end touching a horizontal surface, and is cut at a point 15 cm above the end and thus let drop onto the horizontal surface, the curvature radius of the formed arc is 35 mm or larger; 3. the 0.2% yield strength is not smaller than 0.115 mN/μm2 but not greater than 0.165 mN/μm2; or 4. the Vickers hardness of the coating layer is 300 or lower.
Abstract translation:一种接合线,其包括芯和形成在所述芯上的涂层,其中所述涂层由具有比所述芯更高的熔点的金属形成,并且还具有以下特征中的至少一个; 当芯熔化时与涂层的湿接触角不小于20度; 2.当接合线悬挂时,其端部接触水平表面,并在端部上方15厘米处切割,因此落在水平面上,所形成的弧的曲率半径为35毫米或更大; 0.2%的屈服强度不小于0.115mN / m 2,但不大于0.165mN / m 2。 或4.涂层的维氏硬度为300以下。