Abstract:
Alloy compositions and techniques for reducing IMC thickness and oxidation of metals and alloys are disclosed. In one particular exemplary embodiment, the alloy compositions may be realized as a composition of alloy or mixture consisting essentially of from about 90% to about 99.999% by weight indium and from about 0.001% to about 10% by weight germanium and unavoidable impurities. In another particular exemplary embodiment, the alloy compositions may be realized as a composition of alloy consisting essentially of from about 90% to about 99.999% by weight gallium and from about 0.001% to about 10% by weight germanium and unavoidable impurities.
Abstract:
A method of deposition of a thermal interface material onto a circuit assembly and an integrated circuit formed therefrom is provided. The method includes depositing a thermal interface material at a first layer thickness between a first layer of a circuit assembly and a second layer of the circuit assembly. The thermal interface material includes an emulsion of liquid metal droplets and polymer. The first layer thickness is at least 1.1 times a D90 of the liquid metal droplets prior to compressing the circuit assembly. The method includes compressing the circuit assembly to decrease the first layer thickness to a second layer thickness, thereby deforming the liquid metal droplets. The second layer thickness is no greater than a D90 of the liquid metal droplets in thermal interface material prior to compressing the circuit assembly.
Abstract:
Several embodiments of the present technology are described with reference to a semiconductor apparatus. In some embodiments of the present technology, a semiconductor apparatus includes a stack of semiconductor dies attached to a thermal transfer structure. The thermal transfer structure conducts heat away from the stack of semiconductor dies. Additionally, the assembly can include molded walls to support the thermal transfer structure.
Abstract:
A light emitting device mount includes a positive lead terminal, a negative lead terminal, and a resin portion. Each of the positive and negative lead terminal includes a first main surface, a second main surface, and an end surface. The end surface is provided between the first main surface and the second main surface. The end surface includes a first recessed surface area and a second recessed surface area. The first recessed surface area is extending from a first point of the first main surface in cross section. The second recessed surface area is extending from a second point of the second main surface in cross section. The first and second recessed surface areas define a protruding portion protruding outwardly. The resin portion is positioned at least between the end surface of the positive lead terminal and the end surface of the negative lead terminal.
Abstract:
A light emitting device mount includes a positive lead terminal, and a negative lead terminal. Each of the positive and negative lead terminal includes a first main surface, a second main surface, and an end surface. The end surface is provided between the first main surface and the second main surface. The end surface includes a first recessed surface area and a second recessed surface area. The first recessed surface area is extending from a first point of the first main surface in cross section. The second recessed surface area is extending from a second point of the second main surface in cross section. The first and second recessed surface areas define a protruding portion protruding outwardly.
Abstract:
Invention compositions are a replacement for high melting temperature solder pastes and preforms in high operating temperature and step-soldering applications. In the use of the invention, a mixture of metallic powders reacts below 350 degrees C. to form a dense metallic joint that does not remelt at the original process temperature.
Abstract:
A mount includes a terminal, and a resin portion. The terminal includes a first surface, a second surface, and an end surface having first and second recessed areas that are extend from the first and second surfaces, respectively. The resin portion is integrally formed with the terminal, and at least partially covers the end surface so that the first and second surfaces are at least partially exposed. The resin portion forms a recessed part to accommodate the light emitting device. The second recessed area includes a closest point that is positioned closest to the first surface, and an extension part that extends outward of the closest point and toward the second surface side. The extension part is formed at least on opposing end surfaces of the pair of positive and negative lead terminal. The first recessed area is arranged on the exterior side relative to the closest point.
Abstract:
A semiconductor device includes an anisotropic conductive film for connecting the semiconductor device. The anisotropic conductive film includes a first conductive layer that has first conductive particles. The first conductive particles include cores containing silica or a silica composite, and have a 20% K-value ranging from about 7,000 N/mm2 to about 12,000 N/mm2.
Abstract translation:半导体器件包括用于连接半导体器件的各向异性导电膜。 各向异性导电膜包括具有第一导电颗粒的第一导电层。 第一导电颗粒包括含有二氧化硅或二氧化硅复合材料的芯,并且具有约7,000N / mm 2至约12,000N / mm 2的20%K值。
Abstract:
A light emitting apparatus includes a positive lead terminal and a negative lead terminal, each of which includes a first main surface, a second main surface, and an end surface including a first recessed surface area extending from a first point of the first main surface in cross section, and a second recessed surface area extending from a second point of the second main surface in cross section. A distance between a first part of the end surface of the positive lead terminal and a second part of the end surface of the negative lead terminal than a first distance between the first points of the positive lead terminal and the negative lead terminal and a second distance between the second points of the positive lead terminal and the negative lead terminal. The first part and the second part are separated from the first point and the second point.
Abstract:
Sintering die-attach materials provide a lead-free solution for semiconductor packages with superior electrical, thermal and mechanical performance to prior art alternatives. Wafer-applied sintering materials form a metallurgical bond to both semiconductor die and adherends as well as throughout the die-attach joint and do not remelt at the original process temperature. Application to either one or both sides of the wafer, as well as paste a film application are disclosed.