摘要:
In accordance with an embodiment of the present invention, a semiconductor device includes a first bond pad disposed at a first side of a substrate. The first bond pad includes a first plurality of pad segments. At least one pad segment of the first plurality of pad segments is electrically isolated from the remaining pad segments of the first plurality of pad segments.
摘要:
Provided is a power semiconductor device comprising a bonding joint that, even under a temperature environment of 150° C. or greater enabling operation of a wide bandgap semiconductor, reduces cracking-destruction occurring owing to thermal cycle while conductively connecting an electrode, connection terminal, and semiconductor device substrate.It is a power semiconductor device capable of operating under a temperature of 150° C. or greater having an electrode laminated on a wide bandgap semiconductor substrate and a connection terminal joined to the electrode for connection to external wiring, which power semiconductor device is characterized in that difference among the three coefficients of linear expansion of the electrode, a core of the connection terminal, and the semiconductor device substrate is 5.2×10−6/K at maximum, and that it comprises a joint that directly joins the connection terminal and the electrode.
摘要:
A plurality of chip sealing bodies stacked on a wiring substrate with a connection terminal. The chip sealing body includes a semiconductor chip having a semiconductor integrated circuit, a pad and a conductive connecting material, and a resin sealing the semiconductor chip. The chip sealing body is shaped into a cubic form in which a portion of the conductive connecting material except an end portion located on an external device side and all surfaces of semiconductor chip is sealed by the resin and the end portion of the conductive connecting material located on the external device side is exposed from the cubic form. A conductive bonding wire connects the end portions of the conductive connecting materials and the connection terminal respectively. A resin sealing material seals the plurality of chip sealing bodies, the conductive bonding wire, and the wiring substrate.
摘要:
A wire structure, which may be configured for a semiconductor device, is disclosed. The wire may include an elongate flexible core formed of a conductor material and a cladding layer covering an outer surface of the core. The cladding layer may be a conductor. In various aspects the cladding layer and core have a different grain sizes. An average grain size of the core material may several orders of magnitude greater than an average grain size of the cladding layer material. The cladding layer may be an alloy having a varying concentration of a minor component across its thickness. Methods of forming a wire structure are also disclosed.
摘要:
A wafer-level, batch processed, die-sized integrated circuit (IC) package with both top and bottom side electrical connections is disclosed. In one aspect, a number of bonding wires can be attached to bond pads on the top side (active circuit side) of an IC wafer. Trenches can be formed in the wafer at scribe regions and the bonding wires can extend through the trench. The trench can be filled with coating material. The bonding wires can be partially exposed on the top and/or bottom sides of the wafer to distribute electrical connections from the bond pads to the top and/or bottom sides of the wafer.
摘要:
A microelectronic assembly can include a microelectronic device having device contacts exposed at a surface thereof and an interconnection element having element contacts and having a face adjacent to the microelectronic device. Conductive elements, e.g., wirebonds connect the device contacts with the element contacts and have portions extending in runs above the surface of the microelectronic device. A conductive layer has a conductive surface disposed at at least a substantially uniform distance above or below the plurality of the runs of the conductive elements. In some cases, the conductive material can have first and second dimensions in first and second horizontal directions which are smaller than first and second corresponding dimensions of the microelectronic device. The conductive material is connectable to a source of reference potential so as to achieve a desired impedance for the conductive elements.
摘要:
A printed circuit board (PCB 22) capable of withstanding ultra high G forces and ultra high temperature as in a gas turbine (11). The PCB includes a substrate having a plurality of cavities (30A, 36A) formed therein for receiving components of a circuit, and conductors embedded in the PCB for electrically connecting the components together to complete the circuit. Each of the cavities has a wall (36A′) upstream of the G-forces which supports the respective component in direct contact in order to prevent the development of tensile loads in a bonding layer (37A). When the component is an integrated circuit (50), titanium conductors (63) are coupled between exposed ends of the embedded conductors and contact pads on the integrated circuit. A gold paste (51) may be inserted into interstitial gaps between the integrated circuit and the upstream wall.
摘要:
An electrical contact (2) and method of making the electrical contact (2), and a connector (11) and method making the connector (11), wherein the electrical contact (2) is an electrically conducting, interlaced mesh (40), with edges of the mesh providing multiple contact points for edgewise electrical connection of the electrical contact (2), wherein the mesh (40) is annealed while restrained in the form of the electrical contact (2) wherein the mesh (40) is free of internal elastic strain, or the mesh (40) is hardened, and wherein the connector (11) retains the electrical contact (2) for edgewise connection.
摘要:
A packaging structure and a method for fabricating the packaging structure are provided. The packaging structure includes a base substrate including a solder pad body region and a trench region adjacent to and around the solder pad body region. The packaging structure also includes a passivation layer on a surface of the base substrate and exposing the solder pad body region and the trench region. In addition, the packaging structure includes a main body solder pad on the solder pad body region of the base substrate, and one or more trenches on the trench region of the base substrate and between the passivation layer and the main body solder pad. Further, the packaging structure includes a bonding conductive wire having one end connected to the main body solder pad.
摘要:
A method for fabricating a semiconductor device includes forming a conductive liner over a first landing pad in a first region and over a second landing pad in a second region. The method further includes depositing a first conductive material within first openings within a resist layer formed over the conductive liner. The first conductive material overfills to form a first pad and a first layer of a second pad. The method further includes depositing a second resist layer over the first conductive material, and patterning the second resist layer to form second openings exposing the first layer of the second pad without exposing the first pad. A second conductive material is deposited over the second layer of the second pad.