摘要:
A semiconductor device 10 includes a pair of electrodes 16 and a conductive connection member 21 electrically bonded to the pair of electrodes 16. At least a portion of a perimeter of a bonding surface 24 of at least one of the pair of electrodes 16 and the conductive connection member 21 includes an electromigration reducing area 22.
摘要:
A printed circuit board (PCB 22) capable of withstanding ultra high G forces and ultra high temperature as in a gas turbine (11). The PCB includes a substrate having a plurality of cavities (30A, 36A) formed therein for receiving components of a circuit, and conductors embedded in the PCB for electrically connecting the components together to complete the circuit. Each of the cavities has a wall (36A′) upstream of the G-forces which supports the respective component in direct contact in order to prevent the development of tensile loads in a bonding layer (37A). When the component is an integrated circuit (50), titanium conductors (63) are coupled between exposed ends of the embedded conductors and contact pads on the integrated circuit. A gold paste (51) may be inserted into interstitial gaps between the integrated circuit and the upstream wall.
摘要:
A method for fabricating a semiconductor device includes forming a conductive liner over a first landing pad in a first region and over a second landing pad in a second region. The method further includes depositing a first conductive material within first openings within a resist layer formed over the conductive liner. The first conductive material overfills to form a first pad and a first layer of a second pad. The method further includes depositing a second resist layer over the first conductive material, and patterning the second resist layer to form second openings exposing the first layer of the second pad without exposing the first pad. A second conductive material is deposited over the second layer of the second pad.
摘要:
A method for fabricating a semiconductor device includes forming a conductive liner over a first landing pad in a first region and over a second landing pad in a second region. The method further includes depositing a first conductive material within first openings within a resist layer formed over the conductive liner. The first conductive material overfills to form a first pad and a first layer of a second pad. The method further includes depositing a second resist layer over the first conductive material, and patterning the second resist layer to form second openings exposing the first layer of the second pad without exposing the first pad. A second conductive material is deposited over the second layer of the second pad.
摘要:
In accordance with an embodiment of the present invention, a semiconductor device includes a first bond pad disposed at a first side of a substrate. The first bond pad includes a first plurality of pad segments. At least one pad segment of the first plurality of pad segments is electrically isolated from the remaining pad segments of the first plurality of pad segments.
摘要:
A method for producing an array formed from a multiplicity of electric integrated circuits, said array being intended for separation and having a conductive connection to a central contact path for bond monitoring, said method comprising the following steps: applying conductive tracks to the array, wherein the separation region is recessed from applying said tracks, and closing the conductive connection to the central contact path by applying individual conductive connection portions, which extend between two contact paths which enclose the separation region and are arranged adjacent thereto, formed from at least one material from the group comprising the elements gold, palladium, tantalum and nickel and also comprising the alloy containing predominantly at least one of the mentioned elements.
摘要:
In order to provide an electronic component of a high frequency current suppression type, which can completely suppress a high frequency current to prevent an electromagnetic interference from occurring even when it is used at a high frequency, and a bonding wire for the same, the semiconductor integrated circuit device (IC) (17) operates at a high speed in using at a high frequency band, and a predetermined number of terminals (19) are provided with a high frequency current suppressor (21) for attenuating a high frequency current passing through the terminals themselves. This high frequency current suppressor (21) is a thin film magnetic substance having a range from 0.3 to 20 (nullm) in thickness, and is disposed on the entire surface of each terminal (19), covering a mounting portion to be mounted on a printed wiring circuit board (23) for mounting IC (17) and an edge including a connecting portion to a conductive pattern (25) disposed on the printed wiring circuit board (23). When the top end is connected with the conductive pattern (25) by means of a solder (27) in mounting the printed wiring circuit board (23) of IC (17), the vicinity of the mounting portion has conductivity in a using frequency band, which is less than a few tens MHz.
摘要:
In accordance with an embodiment of the present invention, a semiconductor device includes a first bond pad disposed at a first side of a substrate. The first bond pad includes a first plurality of pad segments. At least one pad segment of the first plurality of pad segments is electrically isolated from the remaining pad segments of the first plurality of pad segments.
摘要:
A printed circuit board (PCB 22) capable of withstanding ultra high G forces and ultra high temperature as in a gas turbine (11). The PCB includes a substrate having a plurality of cavities (30A, 36A) formed therein for receiving components of a circuit, and conductors embedded in the PCB for electrically connecting the components together to complete the circuit. Each of the cavities has a wall (36A′) upstream of the G-forces which supports the respective component in direct contact in order to prevent the development of tensile loads in a bonding layer (37A). When the component is an integrated circuit (50), titanium conductors (63) are coupled between exposed ends of the embedded conductors and contact pads on the integrated circuit. A gold paste (51) may be inserted into interstitial gaps between the integrated circuit and the upstream wall.