Abstract:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed. A variety of materials for the wire stem (which serves as a falsework) and for the overcoat (which serves as a superstructure over the falsework) are disclosed. Various techniques are described for mounting the contact structures to a variety of electronic components (e.g., semiconductor wafers and dies, semiconductor packages, interposers, interconnect substrates, etc.), and various process sequences are described. The resilient contact structures described herein are ideal for making a “temporary” (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing.
Abstract:
A wire bonding machine is provided. The wire bonding machine includes a bonding tool and an electrode for forming a free air ball on an end of a wire extending through the bonding tool where the free air ball is formed at a free air ball formation area of the wire bonding machine. The wire bonding machine also includes a bond site area for holding a semiconductor device during a wire bonding operation. The wire bonding machine also includes a gas delivery mechanism configured to provide a cover gas to: (1) the bond site area whereby the cover gas is ejected through at least one aperture of the gas delivery mechanism to the bond site area, and (2) the free air ball formation area.
Abstract:
A wire bonding machine is provided. The wire bonding machine includes a bonding tool and an electrode for forming a free air ball on an end of a wire extending through the bonding tool where the free air ball is formed at a free air ball formation area of the wire bonding machine. The wire bonding machine also includes a bond site area for holding a semiconductor device during a wire bonding operation. The wire bonding machine also includes a gas delivery mechanism configured to provide a cover gas to: (1) the bond site area whereby the cover gas is ejected through at least one aperture of the gas delivery mechanism to the bond site area, and (2) the free air ball formation area.
Abstract:
A wire bonding structure includes a chip and a bonding wire. The chip includes a base material, at least one first metallic pad, a re-distribution layer and at least one second metallic pad. The first metallic pad is disposed on the base material. The re-distribution layer has a first end and a second end, and the first end is electrically connected to the first metallic pad. The second metallic pad is electrically connected to the second end of the re-distribution layer. The bonding wire is bonded to the second metallic pad.
Abstract:
A wire bonding machine is provided. The wire bonding machine includes a bonding tool and an electrode for forming a free air ball on an end of a wire extending through the bonding tool where the free air ball is formed at a free air ball formation area of the wire bonding machine. The wire bonding machine also includes a bond site area for holding a semiconductor device during a wire bonding operation. The wire bonding machine also includes a gas delivery mechanism configured to provide a cover gas to: (1) the bond site area whereby the cover gas is ejected through at least one aperture of the gas delivery mechanism to the bond site area, and (2) the free air ball formation area.
Abstract:
Contact structures for a variety of electronic components can be formed to have primarily elastic properties. The contact structures can be free standing, and can be coupled to a variety of different electronic components such as a probe card assembly, a semiconductor wafer or dies, an interposer, or the like. Tips of the contact structures can have a topology that facilities contact with another electronic component.
Abstract:
An apparatus for wire bonding and a capillary tool thereof are provided. An exemplary embodiment of a capillary tool capable of a wire bonding comprises a body having a first internal channel of a first diameter for accommodating a flow of a conductive wire. A compressible head is connected to the body, having a second internal channel of a second diameter for accommodating the flow of the conductive wire, wherein the first diameter is fixed and the second diameter is variable, the second diameter is not more than the first diameter and a diameter the conductive wire flowed through the compressible head is adjustable. An integrated circuit (IC) package is also provided.
Abstract:
A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact. The semiconductor component can be used to form chip scale components, wafer scale components, stacked components, or interconnect components for electrically engaging or testing other semiconductor components.
Abstract:
An electrical connection for connecting a bond pad of a first device and a bond pad of a second device with an insulated or coated wire. The electrical connection includes a first wirebond securing a first portion of the insulated bond wire to the first device bond pad. A second wirebond secures a second portion of the insulated bond wire to the second device bond pad. A bump is formed over the second wirebond, and the bump is offset from the second wirebond. The offset bump enhances the second bond, providing it with increased wire peel strength.
Abstract:
An electrical connection for connecting a bond pad of a first device and a bond pad of a second device with an insulated or coated wire. The electrical connection includes a first wirebond securing a first portion of the insulated bond wire to the first device bond pad. A second wirebond secures a second portion of the insulated bond wire to the second device bond pad. A bump is formed over the second wirebond, and the bump is offset from the second wirebond. The offset bump enhances the second bond, providing it with increased wire peel strength.