Abstract:
A method for forming a semiconductor structure includes forming a bond pad over a last metal layer of the semiconductor structure wherein the bond pad includes a wire bond region; and recessing the wire bond region such that the wire bond region has a first thickness and a region of the bond pad outside the wire bond region has a second thickness that is greater than the first thickness.
Abstract:
By configuring an ESD protection element of an NPN transistor (101), it is possible to reduce the area of the ESD protection element and reduce the voltage in a region in which the current increases sharply, and thus possible to increase ESD tolerance. Also, it is possible to provide a highly reliable semiconductor device wherein it is possible to flatten and smooth the surface of an upper layer pad electrode (16) by dividing a pad electrode (8) into a two-layer structure sandwiching an interlayer insulating film (15), and possible to increase the junction strength of a bonding wire, and suppress damage to underlying silicon layers when bonding.
Abstract:
A die structure includes a die and a metallization layer disposed over the front side of the die. The metallization layer includes copper. At least a part of the metallization layer has a rough surface profile. The part with the rough surface profile includes a wire bonding region, to which a wire bonding structure is to be bonded.
Abstract:
A wire is electrically connected to an electrical bonding pad of an integrated circuit chip and electronic device through an intermediate electrical interconnect block that is interposed between the electrical bonding pad and one end of the electrical lead wire.
Abstract:
There is provided a connection structure between a Si electrode (Si member) and an Al wire (Al member). Between the Si electrode and the Al wire, a first part and second parts are present in interposed relation. Each of the first and second parts is in contact with the Si electrode and with the Al wire. In the first part, a Si oxide layer and an Al oxide layer are present. The Si oxide layer is in contact with the Si electrode. The Al oxide layer is interposed between the Si oxide layer and the Al wire. In some of the second parts, Al is present. In the others of the second parts, a Si portion and an Al portion are present.
Abstract:
An ultrasonic bond is formed using a bond tool foot having a waffle shape of thin protrusions and gaps between the protrusions. The tool is brought in contact with the ribbon to a depth to create depressions in a ribbon approximately 150 μm or less from the underlying bonding surface. The tool is then brought down further into the ribbon to contact the portions of the ribbon between the depressions, such as an additional 25 to 50 μm. The result is lightly bonded regions underneath the groove portions and highly bonded regions underneath the protrusions and around the perimeter of the bond. In another embodiment, an ultrasonic bond is formed along a partial width of a ribbon.
Abstract:
A semiconductor device exhibits a first metal layer, made of a first metal, with at least one contiguous subsection. At least one second metal layer, made of a second metal, is placed on the contiguous subsection of the first metal layer. The second metal is harder than the first metal. The second metal layer is structured to form at least two layer regions, which are disposed on the contiguous subsection of the first metal layer. The second metal exhibits a boron-containing or phosphorus-containing metal or a boron-containing or phosphorus-containing metal alloy.
Abstract:
There is provided a connection structure between a Si electrode (Si member) and an Al wire (Al member). Between the Si electrode and the Al wire, a first part and second parts are present in interposed relation. Each of the first and second parts is in contact with the Si electrode and with the Al wire. In the first part, a Si oxide layer and an Al oxide layer are present. The Si oxide layer is in contact with the Si electrode. The Al oxide layer is interposed between the Si oxide layer and the Al wire. In some of the second parts, Al is present. In the others of the second parts, a Si portion and an Al portion are present.
Abstract:
A process of providing a bond pad arrangement for use with a thermocompression wire bonder including a primary bond pad for connection of an integrated circuit during a production assembly process, and a secondary test bond pad contiguous with the primary bond pad for connection of a wire to the integrated circuit. Including performing a test sequence, and removing the wire from the secondary test bond pad.
Abstract:
A package structure is provided. The package structure includes a substrate, a conductive pad, and a conductive wire. The conductive pad is disposed over the substrate. The conductive wire includes an end portion connected to the conductive pad, wherein a grain arrangement of the end portion is distinct from a grain arrangement of the conductive pad.