Abstract:
The invention described herein pertains generally to boric acid free flux composition in which boric acid and/or borax is substituted with a molar equivalent amount of potassium tetraborate tetrahydrate. In some embodiments, a phthalocyanine pigment is used to effect a color change at activation temperature.
Abstract:
A flux-cored wire for gas-shielded arc welding has a steel outer sheath filled with a flux. The flux-cored wire includes specific amounts, relative to a total mass of the wire, of TiO2, at least one of Si, an Si oxide and an Si compound, C, Mn, Mo, Ni, at least one of metal Mg and an Mg alloy, an F compound, a K compound, an Na compound, B and a B compound, and Fe, respectively. A total content of each of Ti and a Ti alloy, metal Al and an Al alloy, and V is restricted to the specific range, respectively. A content of Ti is also restricted to the specific range relative to the total mass of the steel outer sheath.
Abstract:
A method for joining engine components includes positioning a first plurality of thermal protection structures across a thermal protection space between a first thermal protection surface and a second thermal protection surface. The first and second engine components are locally joined by forming a first plurality of transient liquid phase (TLP) or partial transient liquid phase (PTLP) bonds along corresponding ones of the first plurality of thermal protection structures between the first thermal protection surface and the second thermal protection surface. The second thermal protection surface is formed from a second surface material different from a first surface material of the first thermal protection surface.
Abstract:
A titanium oxide raw material for a welding material, which can achieve the improvement in a bead shape and high-speed welding. The titanium oxide raw material has the form of particles and has a composition containing 58.0 to 99.0 mass % of TiO2, 2.5 mass % or less of Si, 3.0 mass % or less of Al, 5.0 mass % or less of Mn, 35.0 mass % or less of Fe, 5.0 mass % or less of Mg and 2.0 mass % or less of Ca, wherein the surface of each of the particles is coated with an oxide and/or a composite oxide of at least one element selected from Ti, Fe, Mn, Al and Si and the atom percentages of Ti, Fe, Mn, Al, Si and O in the oxide and/or the composite oxide fulfill the following three formulae. 1=Al+Si=10, 1
Abstract translation:用于焊接材料的氧化钛原料,其可以实现焊道形状的改善和高速焊接。 氧化钛原料为颗粒形式,其组成为:TiO 2为58.0〜99.0质量%,Si为2.5质量%以下,Al为3.0质量%以下,Mn为5.0质量%以下,Mn为35.0质量% Fe的含量以下,Fe:5.0质量%以下,Ca:2.0质量%以下,其中,每个颗粒的表面涂覆有选自Ti, Fe,Mn,Al和Si,氧化物和/或复合氧化物中Ti,Fe,Mn,Al,Si和O的原子百分比满足以下三个公式。 1 = Al + Si = 10,1 Ti /(Fe + Mn)= 100,O /(Fe + Mn)= 100
Abstract:
A method for joining a first metal part with a second metal part, the metal parts having a solidus temperature above 1000° C. The method includes applying a melting depressant composition on a surface of the first metal part, the melting depressant composition including a melting depressant component that includes phosphorus and silicon for decreasing a melting temperature of the first metal part; bringing the second metal part into contact with the melting depressant composition at a contact point on said surface; heating the first and second metal parts to a temperature above 1000° C.; and allowing a melted metal layer of the first metal component to solidify, such that a joint is obtained at the contact point. The melting depressant composition and related products are also described.
Abstract:
[Object] There is provided a flux-cored wire capable of obtaining a weld metal having excellent low temperature toughness and improving welding efficiency, in which preheating performed for preventing cold cracking can be omitted or simplified.[Means for Solving Problems] The flux-cored wire includes one or more of CaF2, BaF2, SrF2, MgF2, and LiF and, when a total amount thereof is defined as a, the α is 2.0% to 7.0%, by mass %, with respect to a total mass of the flux-cored wire, one or more of a Ti oxide, a Si oxide, a Mg oxide, an Al oxide, a Zr oxide, and a Ca oxide are included in the flux-cored wire, and when a total amount thereof is defined as β, the β is 0.2% to 0.9%, by mass %, with respect to the total mass of the flux-cored wire, a ratio of an amount of the CaF2 with respect to the α is 0.90 or more, and a ratio of the α with respect to the β is 3.0 or more and 15.0 or less.
Abstract:
Embodiments of an alloy that can be resistant to cracking. In some embodiments, the alloy can be advantageous for use as a hardfacing alloys, in both a diluted and undiluted state. Certain microstructural, thermodynamic, and performance criteria can be met by embodiments of the alloys that may make them advantageous for hardfacing.
Abstract:
A method for brazing an aluminum alloy includes applying a flux component to a surface of an aluminum alloy member, and brazing the aluminum alloy member to which the flux component has been applied, the flux component being a component (A) that is a powder of an alkali metal zinc fluoroaluminate represented by “MwZnxAlyFz (1)” (wherein M is K or Cs, and w, x, y, and z are a positive integer, the greatest common divisor of w, x, y, and z being 1), the component (A) being applied to the surface of the aluminum alloy member in an amount of 1 to 50 g/m2. A flux composition prevents occurrence of a brazing defect and discoloration even when an aluminum alloy is brazed in an atmosphere having a high oxygen concentration, or an atmosphere having high humidity.
Abstract translation:一种用于钎焊铝合金的方法包括将助熔剂组分施加到铝合金构件的表面,并且钎焊已经施加助焊剂组分的铝合金构件,所述助熔剂组分是组分(A),其是作为 由“MwZnxAlyFz(1)”表示的碱金属锌氟铝酸盐(其中M为K或Cs,w,x,y和z为正整数,w,x,y和z的最大公约数为1 ),将成分(A)以1〜50g / m 2的量施加到铝合金构件的表面。 助焊剂组合物即使在铝氧化物浓度高的气氛或者高湿度的气氛中钎焊铝合金也能防止钎焊缺陷的发生和变色。
Abstract:
A method of removing a ceramic thermal barrier coating system (18). Laser energy (20) is applied to the thermal barrier coating system in the presence of a flux material (22) in order to form a melt (26). Upon removal of the energy, the melt solidifies to from a layer of slag (28) which is more loosely adhered to the underlying metallic substrate (12) than the original thermal barrier coating system. The slag is then broken and released from the substrate with a mechanical process such as grit blasting (30). Sufficient energy may be applied to melt an entire depth of the coating system along with a thin layer (34) of the substrate, thereby forming a refreshed surface (36) on the substrate upon resolidification.