摘要:
The present invention provides a ball forming method for forming a ball portion at a tip of a bonding wire which includes a core material mainly composed of Cu, and a coating layer mainly composed of Pd and formed over a surface of the core material, wherein the ball portion is formed in non-oxidizing atmosphere gas including hydrocarbon which is gas at room temperature and atmospheric pressure, the method being capable of improving Pd coverage on a ball surface in forming a ball at a tip of the Pd-coated Cu bonding wire.
摘要:
A semiconductor device of the present invention includes a semiconductor element, a surface electrode formed on a surface of the semiconductor element, a metal film formed on the surface electrode so as to have a joining portion and a stress relieving portion formed so as to border on and surround the joining portion, solder joined to the joining portion while avoiding the stress relieving portion, and an external electrode joined to the joining portion through the solder.
摘要:
A wire bond system. Implementations may include: a bond wire including copper (Cu), a bond pad including aluminum (Al) and a sacrificial anode electrically coupled with the bond pad, where the sacrificial anode includes one or more elements having a standard electrode potential below a standard electrode potential of Al.
摘要:
A power semiconductor module includes a circuit carrier including an insulation carrier having a top side on which a metallization layer is arranged. A power semiconductor chip is arranged on a side of the metallization layer facing away from the insulation carrier, and which has on a top side of the power semiconductor chip facing away from the circuit carrier an upper chip metallization composed of copper or a copper alloy having a thickness of greater than or equal to 1 μm. An electrical connection conductor composed of copper or a copper alloy is connected to the upper chip metallization at a connecting location. A potting compound extends from the circuit carrier to at least over the top side of the power semiconductor chip and completely covers the top side of the power semiconductor chip, encloses the connection conductor at least in the region of the connecting location, and has a penetration of less than or equal to 30 according to DIN ISO 2137 at a temperature of 25° C.
摘要翻译:功率半导体模块包括电路载体,该电路载体包括绝缘载体,该绝缘载体具有布置有金属化层的顶侧。 功率半导体芯片布置在金属化层的背离绝缘载体的一侧上,并且在功率半导体芯片的顶侧上背离电路载体,由铜或铜合金构成的上部芯片金属化层具有 大于或等于1μm的厚度。 由铜或铜合金构成的电连接导体在连接位置连接到上部芯片金属化。 灌封化合物从电路载体延伸到至少超过功率半导体芯片的顶侧,并且完全覆盖功率半导体芯片的顶侧,至少在连接位置的区域中包围连接导体,并具有穿透 根据DIN ISO 2137在25℃的温度下小于或等于30。
摘要:
The present invention relates to a method of bonding a copper wire to a substrate, particularly a printed circuit board and an IC-substrate, possessing a layer assembly comprising a copper bonding portion and a palladium or palladium alloy layer and a substrate having a copper wire bonded to aforementioned layer assembly.
摘要:
An integrated circuit package comprising a substrate having terminal pads arranged in at least one row along a perimeter of a surface of the substrate, vias connecting the terminal pads directly to connectors on an opposite side of the substrate, a semiconductor chip mounted on the substrate, inside the perimeter, the chip having bond pads located on a surface of the chip, and a plurality of insulated bond wires, each of the bond wires extending from a bond pad on the chip to a terminal pad on the substrate, the substrate being sized and shaped to provide a sufficient number of rows of terminal pads and associated vias so that horizontal traces through the substrate are not required.
摘要:
A copper plated aluminum wire with improvement in adhesive properties is fabricated by a method which includes a displacement step of forming a thin layer of a metal by displacement on a surface of an aluminum or aluminum alloy conductor, an electroplating step of coating a surface of the thin layer continuously with copper layers by electroplating to have a copper coated aluminum conductor, and a thermal diffusion step of heat treating the copper coated aluminum conductor at a temperature of 120° C. to 600° C. under an inert gas atmosphere for thermal diffusion. A plated aluminum wire is provided having an anchor metal layer formed by displacement plating, a low thermally conductive metal layer formed by electroplating, and a high electrically conductive metal layer formed by electroplating in which all of the layers are sequentially deposited on an outer surface of an aluminum or aluminum alloy conductor. A plated aluminum wire is provided having an anchor metal layer formed by displacement plating and a high electrically conductive metal layer formed by electroplating in which both of the layers are sequentially deposited on an outer surface of an aluminum or aluminum alloy conductor. A composite lightweight copper plated wire is provided having an electrically conductive metal layer that is deposited by electroplating on an outer surface of an anchor metal layer provided on an aluminum conductor.
摘要:
A method for forming a semiconductor device includes forming an insulating material layer above a semiconductor substrate and modifying at least a portion of a surface of the insulating material layer after forming the insulating material layer. Further, the method includes forming an electrical conductive structure on at least the portion of the surface of the insulating material layer after modifying at least the portion of the surface of the insulating material layer.
摘要:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 μm2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 50% to 90%. During the drawing step, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.