摘要:
A semiconductor structure having a silver-indium transient liquid phase bonding joint is provided. With the ultra-thin silver-indium transient liquid phase bonding joint formed between the semiconductor device and the heat-spreading mount, its thermal resistance can be minimized to achieve a high thermal conductivity. Therefore, the heat spreading capability of the heat-spreading mount can be fully realized, leading to an optimal performance of the high power electronics and photonics devices.
摘要:
There is provided an imaging device, an electronic apparatus including an imaging device, and an automotive vehicle including an electronic apparatus including an imaging device, including: a first substrate including a first set of photoelectric conversion units; a second substrate including a second set of photoelectric conversion units; and an insulating layer between the first substrate and the second substrate; where the insulating layer has a capability to reflect a first wavelength range of light and transmit a second wavelength range of light that is longer than the first wavelength range of light.
摘要:
Methods of manufacturing semiconductor packages. Implementations may include: providing a substrate with a first side, a second side, and a thickness; forming a plurality of pads on the first side of the substrate; and applying die attach material to the plurality of pads. The method may include bonding a wafer including a plurality of semiconductor die to the substrate at one or more die pads included in each die. The method may also include singulating the plurality of semiconductor die, overmolding the plurality of semiconductor die and the first side of the substrate with an overmold material, and removing the substrate to expose the plurality of pads and to form a plurality of semiconductor packages coupled together through the overmold material. The method also may include singulating the plurality of semiconductor packages to separate them.
摘要:
A device and a method for producing a device are disclosed. In an embodiment the device includes a first component, a second component and a connecting element directly arranged between the first component and the second component, wherein the connecting element includes at least a first metal, which is formed as an adhesive layer, a diffusion barrier and a component of a first phase and a second phase of the connecting element, wherein the adhesive layer is arranged on the first component and/or the second component, wherein the first phase and/or the second phase includes, besides the first metal, further metals different from the first metal, wherein a concentration of the first metal in the first phase is greater than a concentration of the first metal in the second phase, and wherein the connecting element includes a layer of a silicide of the first metal.
摘要:
Methods of manufacturing semiconductor packages. Implementations may include: providing a substrate with a first side, a second side, and a thickness; forming a plurality of pads on the first side of the substrate; and applying die attach material to the plurality of pads. The method may include bonding a wafer including a plurality of semiconductor die to the substrate at one or more die pads included in each die. The method may also include singulating the plurality of semiconductor die, overmolding the plurality of semiconductor die and the first side of the substrate with an overmold material, and removing the substrate to expose the plurality of pads and to form a plurality of semiconductor packages coupled together through the overmold material. The method also may include singulating the plurality of semiconductor packages to separate them.
摘要:
A method for manufacturing a semiconductor device includes preparing a semiconductor chip having a back surface made of a Cu layer. The semiconductor chip is bonded to a die pad having a front surface made of Cu via a bonding material containing a dissimilar metal not containing Cu and Pb and a Bi-based material so that the Cu layer and the bonding material come into contact with each other. After the bonding, the die pad is then heat-treated.
摘要:
A wafer seal ring may be formed on a first and/or a second wafer. One or both of the first and/or second wafers may have one or more dies formed thereon. The wafer seal ring may be formed to surround the dies of a corresponding wafer. One or more die seal rings may be formed around the one or more dies. The wafer seal ring may be formed to a height that may be approximately equal to a height of one or more die seal rings formed on the first and/or second wafer. The wafer seal ring may be formed to provide for eutectic or fusion bonding processes. The first and second wafers may be bonded together to form a seal ring structure between the first and second wafers. The seal ring structure may provide a hermetic seal between the first and second wafers.
摘要:
A method of forming a semiconductor package. Implementations include forming on a die backside an intermediate metal layer having multiple sublayers, each including a metal selected from the group consisting of titanium, nickel, copper, silver, and combinations thereof. A tin layer is deposited onto the intermediate metal layer and is then reflowed with a silver layer of a substrate to form an intermetallic layer having a melting temperature above 260 degrees Celsius and including an intermetallic consisting of silver and tin and/or an intermetallic consisting of copper and tin. Another method of forming a semiconductor package includes forming a bump on each of a plurality of exposed pads of a top side of a die, each exposed pad surrounded by a passivation layer, each bump including an intermediate metal layer as described above and a tin layer coupled to the intermediate metal layer is reflowed to form an intermetallic layer.
摘要:
Laminated composite (10) comprising at least one electronic substrate (11) and an arrangement of layers (20, 30) made up of at least a first layer (20) of a first metal and/or a first metal alloy and of a second layer (30) of a second metal and/or a second metal alloy adjacent to this first layer (20), wherein the melting temperatures of the first and second layers are different, and wherein, after a thermal treatment of the arrangement of layers (20, 30), a region with at least one intermetallic phase (40) is formed between the first layer and the second layer, wherein the first layer (20) or the second layer (30) is formed by a reaction solder which consists of a mixture of a basic solder with an AgX, CuX or NiX alloy, wherein the component X of the AgX, CuX or NiX alloy is selected from the group consisting of B, Mg, Al, Si, Ca, Se, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ba, Hf, Ta, W, Au, Bi, La, Ce, Pr, Nd, Gd, Dy, Sm, Er, Tb, Eu, Ho, Tm, Yb and Lu and wherein the melting temperature of the AgX, CuX or NiX alloy is greater than the melting temperature of the basic solder. The invention also relates to a method for forming a laminated composite (10) and to a circuit arrangement containing a laminated composite (10) according to the invention.
摘要:
A preform structure for soldering a semiconductor chip arrangement includes a carbon fiber composite sheet and a solder layer formed over the carbon fiber composite sheet.