Abstract:
A display module and a manufacturing method thereof are provided. The manufacturing method may include forming an epitaxial film comprising a light emitting layer, a first type semiconductor layer, and a second type semiconductor layer, attaching the epitaxial film to an intermediate substrate comprising a conductive material, patterning the epitaxial film to form a light emitting diode (LED) and coupling the LED to a driving circuit layer through the conductive material.
Abstract:
A metal sintering preparation containing (A) 50 to 90% by weight of at least one metal that is present in the form of particles having a coating that contains at least one organic compound, and (B) 6 to 50% by weight organic solvent. The mathematical product of tamped density and specific surface of the metal particles of component (A) is in the range of 40,000 to 80,000 cm−1.
Abstract:
Disclosed is a jointed body wherein multiple base members are jointed to each other through a jointing layer, and at least one of the base members is a base member of a ceramic material, semiconductor or glass. The joint material layer contains a metal and an oxide. The oxide contains V and Te, and is present between the metal and the base members. Disclosed is also a joint material in the form of a paste containing an oxide glass containing V and Te, metal particles, and a solvent; in the form of a foil piece or plate in which particles of an oxide glass containing V and Te are embedded; or in the form of a foil piece or plate containing a layer of an oxide glass containing V and Te, and a layer of a metal.
Abstract:
There are provided a solder joint structure, a power module using the joint structure, a power module substrate with a heat sink and a method of manufacturing the same, as well as a solder base layer forming paste which is disposed and fired on a metal member to thereby react with an oxide film generated on the surface of the metal member and form the solder base layer on the metal member, capable of suppressing the occurrence of waviness and wrinkles on the surface of the metal member even at the time of loading the power cycle and heat cycle and improving the joint reliability with a joint member.
Abstract:
A manufacturing method includes the step of forming a diced semiconductor wafer (10) including semiconductor chips (11) from a semiconductor wafer (W) typically on a dicing tape (T1). The diced semiconductor wafer (10) on the dicing tape (T1) is laminated with a sinter-bonding sheet (20). The semiconductor chips (11) each with a sinter-bonding material layer (21) derived from the sinter-bonding sheet (20) are picked up typically from the dicing tape (T1). The semiconductor chips (11) each with the sinter-bonding material layer are temporarily secured through the sinter-bonding material layer (21) to a substrate. Through a heating process, sintered layers are formed from the sinter-bonding material layers (21) lying between the temporarily secured semiconductor chips (11) and the substrate, to bond the semiconductor chips (11) to the substrate. The semiconductor device manufacturing method is suitable for efficiently supplying a sinter-bonding material to individual semiconductor chips while reducing loss of the sinter-bonding material.
Abstract:
Microelectronic systems and components having integrated heat dissipation posts are disclosed, as are methods for fabricating such microelectronic systems and components. In various embodiments, the microelectronic system includes a substrate having a frontside, a socket cavity, and inner cavity sidewalls defining the socket cavity. A microelectronic component is seated on the frontside of the substrate such that a heat dissipation post, which projects from the microelectronic component, is received in the socket cavity and separated from the inner cavity sidewalls by a peripheral clearance. The microelectronic system further includes a bond layer contacting the inner cavity sidewalls, contacting an outer peripheral portion of the heat dissipation post, and at least partially filling the peripheral clearance.
Abstract:
An electronic device includes an electronic element, a plurality of first sub-electrodes arrayed in a first direction, a plurality of second sub-electrodes arrayed in a second direction that is orthogonal to the first direction, a dummy electrode, and a sealing resin. The sealing resin has a resin back surface from which the plurality of first sub-electrodes, the plurality of second sub-electrodes and the dummy electrode are exposed. The plurality of second sub-electrodes are located further in the first direction than any of the plurality of first sub-electrodes. The plurality of first sub-electrodes are located further in the second direction than any of the plurality of second sub-electrodes. The dummy electrode is located further in the first direction than any of the plurality of first sub-electrodes, and is located further in the second direction than any of the plurality of second sub-electrodes.
Abstract:
The present disclosure is directed to a hybrid conductive ink including: silver nanoparticles and eutectic low melting point alloy particles, wherein a weight ratio of the eutectic low melting point alloy particles and the silver nanoparticles ranges from 1:20 to 1:5. Also provided herein are methods of forming an interconnect including a) depositing a hybrid conductive ink on a conductive element positioned on a substrate, wherein the hybrid conductive ink comprises silver nanoparticles and eutectic low melting point alloy particles, the eutectic low melting point alloy particles and the silver nanoparticles being in a weight ratio from about 1:20 to about 1:5; b) placing an electronic component onto the hybrid conductive ink; c) heating the substrate, conductive element, hybrid conductive ink and electronic component to a temperature sufficient i) to anneal the silver nanoparticles in the hybrid conductive ink and ii) to melt the low melting point eutectic alloy particles, wherein the melted low melting point eutectic alloy flows to occupy spaces between the annealed silver nanoparticles, d) allowing the melted low melting point eutectic alloy of the hybrid conductive ink to harden and fuse to the electronic component and the conductive element, thereby forming an interconnect. Electrical circuits including conductive traces and, optionally, interconnects formed with the hybrid conductive ink are also provided.
Abstract:
A heat-dissipating structure is formed by bonding a first member and a second member, each being any of a metal, ceramic, and semiconductor, via a die bonding member; or a semiconductor module formed by bonding a semiconductor chip, a metal wire, a ceramic insulating substrate, and a heat-dissipating base substrate including metal, with a die bonding member interposed between each. At least one of the die bonding members includes a lead-free low-melting-point glass composition and metal particles. The lead-free low-melting-point glass composition accounts for 78 mol % or more in terms of the total of the oxides V2O5, TeO2, and Ag2O serving as main ingredients. The content of each of TeO2 and Ag2O is 1 to 2 times the content of V2O5, and at least one of BaO, WO3, and P2O5 is included as accessory ingredients, and at least one of Y2O3, La2O3, and Al2O3 is included as additional ingredients.
Abstract:
A semiconductor device, in which a solder layer bonding chip parts and wiring members are enclosed with the resin layer, and the solder layer is comprised of a compound body in which metal powder is distributed in the matrix metal, is disclosed. When a semiconductor device in which the chip parts are installed in the wiring member with the solders, the soldering part is sealed with the resin is mounted secondly on the external wiring member, the outflow of the solders and the short circuit due to the outflow, the disconnections, and the displacement of the chip parts can be prevented.