Abstract:
A display device includes a display substrate, a signal pad part, an insulating layer, a connection pad part, and an electronic component. The signal pad part includes first and second signal pad parts, which face each other in one direction. The insulating layer covers the signal pad part. The connection pad part is disposed on the insulating layer and includes a first connection pad part overlapping the first signal pad part and a second connection pad part. The second connection pad part is electrically connected to the first connection pad part and is in electrical contact with the second signal pad part through a contact hole defined in the insulating layer. The electronic component includes a bump that is in electrical contact with the first connection pad part. The first signal pad part includes a plurality of signal pad portions spaced apart from each other.
Abstract:
A semiconductor device assembly has a first substrate, a second substrate, and an anisotropic conductive film. The first substrate includes a first plurality of connectors. The second substrate includes a second plurality of connectors. The anisotropic conductive film is positioned between the first plurality of connectors and the second plurality of connectors. The anisotropic conductive film has an electrically insulative material and a plurality of interconnects laterally separated by the electrically insulative material. The plurality of interconnects forms electrically conductive channels extending from the first plurality of connectors to the second plurality of connectors. A method includes connecting the plurality of interconnects to the first plurality of connectors and the second plurality of connectors, such that the electrically conductive channels are operable to conduct electricity from the first substrate to the second substrate. The method may include passing electrical current through the plurality of interconnects.
Abstract:
An electronic device includes an electronic element, a plurality of first sub-electrodes arrayed in a first direction, a plurality of second sub-electrodes arrayed in a second direction that is orthogonal to the first direction, a dummy electrode, and a sealing resin. The sealing resin has a resin back surface from which the plurality of first sub-electrodes, the plurality of second sub-electrodes and the dummy electrode are exposed. The plurality of second sub-electrodes are located further in the first direction than any of the plurality of first sub-electrodes. The plurality of first sub-electrodes are located further in the second direction than any of the plurality of second sub-electrodes. The dummy electrode is located further in the first direction than any of the plurality of first sub-electrodes, and is located further in the second direction than any of the plurality of second sub-electrodes.
Abstract:
A carrier substrate having a plurality of receptacles each for receiving and carrying a semiconductor chip is provided. Semiconductor chips are arranged in the receptacles, and metal is plated in the receptacles to form a metal structure on and in contact with the semiconductor chips. The carrier substrate is cut to form separate semiconductor devices.
Abstract:
A wiring substrate includes a first substrate and an electronic component mounted on an upper surface of the first substrate. A first pad is formed on an uppermost wiring layer of the first substrate. A connection terminal is formed on the electronic component and is located proximate to the first pad in a plan view. The wiring substrate further includes a connection member formed on the first pad to electrically connect the first pad and the connection terminal. The connection member includes a rod-shaped core and a solder layer, which is coated around the core and joined to the first pad. The solder layer includes a bulge that spreads from the core of the connection member in a planar direction. The bulge is joined to the connection terminal of the electronic component.
Abstract:
The present invention provides a package structure with an embedded electronic component and a method of fabricating the package structure. The method includes: forming a first wiring layer on a carrier; removing the carrier and forming the first wiring layer on a bonding carrier; disposing an electronic component on the first wiring layer; forming an encapsulating layer, a second wiring layer and an insulating layer on the first wiring layer; disposing a chip on the electronic component and the second wiring layer; and forming a covering layer that covers the chip. The present invention can effectively reduce the thickness of the package structure and the electronic component without using adhesives.
Abstract:
3D joining of microelectronic components and a conductively self-adjusting anisotropic matrix are provided. In an implementation, an adhesive matrix automatically makes electrical connections between two surfaces that have electrical contacts, and bonds the two surfaces together. Conductive members in the adhesive matrix are aligned to automatically establish electrical connections between at least partially aligned contacts on each of the two surfaces while providing nonconductive adhesion between parts of the two surfaces lacking aligned contacts. An example method includes forming an adhesive matrix between two surfaces to be joined, including conductive members anisotropically aligned in an adhesive medium, then pressing the two surfaces together to automatically connect corresponding electrical contacts that are at least partially aligned on the two surfaces. The adhesive medium in the matrix secures the two surfaces together.
Abstract:
A semiconductor structure includes a semiconductor substrate having a recess disposed beneath a semiconductor device. The semiconductor structure also includes a thermally conductive core disposed in the recess, and a package substrate including a heat sink. The heat sink is in thermal contact with the thermally conductive core.
Abstract:
A semiconductor structure includes a semiconductor substrate having a recess disposed beneath a semiconductor device. The semiconductor structure also includes a thermally conductive core disposed in the recess, and a package substrate including a heat sink. The heat sink is in thermal contact with the thermally conductive core.
Abstract:
A wiring substrate includes a first substrate and an electronic component mounted on an upper surface of the first substrate. A first pad is formed on an uppermost wiring layer of the first substrate. A connection terminal is formed on the electronic component and is located proximate to the first pad in a plan view. The wiring substrate further includes a connection member formed on the first pad to electrically connect the first pad and the connection terminal. The connection member includes a rod-shaped core and a solder layer, which is coated around the core and joined to the first pad. The solder layer includes a bulge that spreads from the core of the connection member in a planar direction. The bulge is joined to the connection terminal of the electronic component.