摘要:
To provide an Al bonding wire for semiconductor devices that stably exhibits a favorable bonding strength at a second bonded part. An Al bonding wire for semiconductor devices containing equal to or larger than 0.01 mass % and smaller than 0.8 mass % of one or more of Sc, Zr, and Mg in total, wherein, as a result of measuring a crystal orientation on a cross-section parallel to a wire axis direction including a wire axis of the bonding wire, 10 an orientation ratio of a crystal orientation angled at 15 degrees or less to the wire axis direction is equal to or higher than 30% and equal to or lower than 90%.
摘要:
A bonding wire for a semiconductor device including a coating layer having Pd as a main component on the surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing a metallic element of Group 10 of the Periodic Table of Elements in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in 2nd bondability and excellent ball bondability in a high-humidity heating condition. Furthermore, a maximum concentration of Au in the skin alloy layer is preferably 15 at % to 75 at %.
摘要:
Bonding wire for semiconductor device use where both leaning failures and spring failures are suppressed by (1) in a cross-section containing the wire center and parallel to the wire longitudinal direction (wire center cross-section), there are no crystal grains with a ratio a/b of a long axis “a” and a short axis “b” of 10 or more and with an area of 15 μm2 or more (“fiber texture”), (2) when measuring a crystal direction in the wire longitudinal direction in the wire center cross-section, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 10% to less than 50%, and (3) when measuring a crystal direction in the wire longitudinal direction at the wire surface, the ratio of crystal direction with an angle difference with respect to the wire longitudinal direction of 15° or less is, by area ratio, 70% or more. During the drawing step, a drawing operation with a rate of reduction of area of 15.5% or more is performed at least once. The final heat treatment temperature and the pre-final heat treatment temperature are made predetermined ranges.
摘要:
There is provided a novel Cu bonding wire that achieves a favorable FAB shape and achieve a favorable bond reliability of the 2nd bonding part even in a rigorous high-temperature environment. The bonding wire for semiconductor devices includes a core material of Cu or Cu alloy, and a coating layer having a total concentration of Pd and Ni of 90 atomic% or more formed on a surface of the core material. The bonding wire is characterized in that:
in a concentration profile in a depth direction of the wire obtained by performing measurement using Auger electron spectroscopy (AES) so that the number of measurement points in the depth direction is 50 or more for the coating layer, a thickness of the coating layer is 10 nm or more and 130 nm or less, an average value X is 0.2 or more and 35.0 or less where X is defined as an average value of a ratio of a Pd concentration CPd (atomic%) to an Ni concentration CNi (atomic%), CPd/CNi, for all measurement points in the coating layer, the total number of measurement points in the coating layer whose absolute deviation from the average value X is 0.3X or less is 50% or more relative to the total number of measurement points in the coating layer, and the bonding wire satisfies at least one of following conditions (i) and (ii):
(i) a concentration of In relative to the entire wire is 1 ppm by mass or more and 100 ppm by mass or less; and (ii) a concentration of Ag relative to the entire wire is 1 ppm by mass or more and 500 ppm by mass or less.
摘要:
A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer formed on a surface thereof. Containing an element that provides bonding reliability in a high-temperature environment improves the bonding reliability of the ball bonded part in high temperature. Furthermore, making an orientation proportion of a crystal orientation angled at 15 degrees or less to a wire longitudinal direction among crystal orientations in the wire longitudinal direction 30% or more when measuring crystal orientations on a cross-section of the core material in a direction perpendicular to a wire axis of the bonding wire, and making an average crystal grain size in the cross-section of the core material in the direction perpendicular to the wire axis of the bonding wire 0.9 to 1.5 μm provides a strength ratio of 1.6 or less.
摘要:
The present invention provides a ball forming method for forming a ball portion at a tip of a bonding wire which includes a core material mainly composed of Cu, and a coating layer mainly composed of Pd and formed over a surface of the core material, wherein the ball portion is formed in non-oxidizing atmosphere gas including hydrocarbon which is gas at room temperature and atmospheric pressure, the method being capable of improving Pd coverage on a ball surface in forming a ball at a tip of the Pd-coated Cu bonding wire.
摘要:
A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 μm. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
摘要:
There is provided a novel Al wiring material that suppresses an increase in cold strength and exhibits a favorable high-temperature reliability. The Al wiring material contains one or more selected from the group consisting of Er, Yb and Gd so as to satisfy 0.001≤x1≤0.6 where x1 is a total content thereof [% by mass], with the balance comprising Al.
摘要:
There is provided an Ag alloy bonding wire for semiconductor devices which exhibits a favorable bond reliability in a high-temperature environment even when using a mold resin of high S content and can suppress a chip damage at the time of ball bonding. The Ag alloy bonding wire is characterized by containing at least one element selected from the group consisting of Pd and Pt (hereinafter referred to as a “first element”) and at least one element selected from the group consisting of P, Cr, Zr and Mo (hereinafter referred to as a “second element”) so as to satisfy
0.05
≤
x 1
≤
3.0 ,
and
15
≤
x 2
≤
700
where x1 is a total concentration of the first element [at.%] and x2 is a total concentration of the second element [at. ppm],
摘要:
There is provided a bonding wire for a semiconductor device including a coating layer having Pd as a main component on a surface of a Cu alloy core material and a skin alloy layer containing Au and Pd on a surface of the coating layer, the bonding wire further improving 2nd bondability on a Pd-plated lead frame and achieving excellent ball bondability even in a high-humidity heating condition. The bonding wire for a semiconductor device including the coating layer having Pd as a main component on the surface of the Cu alloy core material and the skin alloy layer containing Au and Pd on the surface of the coating layer has a Cu concentration of 1 to 10 at % at an outermost surface thereof and has the core material containing either or both of Pd and Pt in a total amount of 0.1 to 3.0% by mass, thereby achieving improvement in the 2nd bondability and excellent ball bondability in the high-humidity heating condition. Furthermore, a maximum concentration of Au in the skin alloy layer is preferably 15 at % to 75 at %.