摘要:
A method for bonding of a first, at least partially metallic contact surface of a first substrate to a second, at least partially metallic contact surface of a second substrate, with the following steps, especially the following progression: application of a sacrificial layer which is at least partially, especially predominantly soluble in the material of at least one of the contact surfaces to at least one of the contact surfaces, bonding of the contact surfaces with at least partial solution of the sacrificial layer in at least one of the contact surfaces.
摘要:
In certain embodiments, a system includes a deposition system and a plasma/bonding system. The deposition system deposits a solder outwardly from a substrate of a number of substrates. The plasma/bonding system comprises a plasma system configured to plasma clean the substrate and a bonding system configured to bond the substrates. The plasma/bonding system at least reduces reoxidation of the solder. In certain embodiments, a method comprises depositing solder outwardly from a substrate, removing metal oxide from the substrate, and depositing a capping layer outwardly from the substrate to at least reduce reoxidation of the solder.
摘要:
A substrate bonding method comprises the following steps. Firstly, a first substrate and a second substrate are provided, wherein a surface of the first substrate is covered by a first Ag layer and a surface of the second substrate is covered by a second Ag layer and a metallic layer from bottom to top, wherein the metallic layer comprises a first Sn layer. Secondly, a bonding process is performed by aligning the first and second substrates followed by bringing the metallic layer into contact with the first Ag layer followed by applying a load while heating to a predetermined temperature in order to form Ag3Sn intermetallic compounds. Finally, cool down and remove the load to complete the bonding process.
摘要:
The present invention relates to a through silicon via (TSV) for 3D packaging to integrate a semiconductor device and a method for manufacturing the same, and more particularly, to a through silicon via (TSV) for 3D packaging of a semiconductor device that is capable of improving production efficiency, having very high electric conductivity, and minimizing electrical signal delay, without using a carrier wafer by self-aligning substrates in a low temperature state and sequentially bonding a plurality of semiconductor dies (or semiconductor chips), and a method of manufacturing the same.
摘要:
The present invention provides a masking tape which can be easily released without leaving an adhesive residue. A heat resistant masking tape, comprising (1) a heat resistant backing film layer, and (2) a pressure-sensitive adhesive layer disposed on the heat resistant backing film layer, wherein the adhesive layer comprises a polymer having a solubility parameter (SP) value at 25° C. of 20 MPa0.5 or less.
摘要:
A semiconductor composite apparatus includes a semiconductor thin film layer and a substrate. The semiconductor thin film layer and the substrate are bonded to each other with a layer of an alloy of a high-melting-point metal and a low-melting-point metal formed between the semiconductor thin film layer and the substrate. The alloy has a higher melting point than the low-melting-point metal. The layer of the alloy contains a product resulting from a reaction of the low-melting-point metal and a material of said semiconductor thin film layer.
摘要:
Representative implementations of techniques and methods include processing singulated dies in preparation for bonding. A plurality of semiconductor die components may be singulated from a wafer component, the semiconductor die components each having a substantially planar surface. Particles and shards of material may be removed from edges of the plurality of semiconductor die component. Additionally, one or more of the plurality of semiconductor die components may be bonded to a prepared bonding surface, via the substantially planar surface.
摘要:
Representative techniques provide process steps for forming a microelectronic assembly, including preparing microelectronic components such as dies, wafers, substrates, and the like, for bonding. One or more surfaces of the microelectronic components are formed and prepared as bonding surfaces. The microelectronic components are stacked and bonded without adhesive at the prepared bonding surfaces.
摘要:
This invention relates to a method for bonding of a first contact area of a first at least largely transparent substrate to a second contact area of a second at least largely transparent substrate, on at least one of the contact areas an oxide being used for bonding, from which an at least largely transparent interconnection layer is formed with an electrical conductivity of at least 10e1 S/cm2 (measurement: four point method, relative to temperature of 300K) and an optical transmittance greater than 0.8 (for a wavelength range from 400 nm to 1500 nm) on the first and second contact area.
摘要:
In an aspect, a system and method for assembling a semiconductor device on a receiving surface of a destination substrate is disclosed. In another aspect, a system and method for assembling a semiconductor device on a destination substrate with topographic features is disclosed. In another aspect, a gravity-assisted separation system and method for printing semiconductor device is disclosed. In another aspect, various features of a transfer device for printing semiconductor devices are disclosed.