摘要:
A method for preparing a semiconductor layer comprises the following steps: providing a mica substrate; depositing a plurality of semiconductor films on the mica substrate to form a semiconductor substrate; and cooling the semiconductor substrate at a cooling rate to separate the plurality of semiconductor films from the mica substrate to obtain a semiconductor layer, wherein the cooling rate ranges from 10° C./min to 50° C./min. Herein, the plurality of semiconductor films comprise a first semiconductor film and a second semiconductor film, the first semiconductor film is formed at a first temperature, the second semiconductor film is formed at a second temperature, the first temperature is lower than the second temperature, and the first semiconductor film is disposed between the mica substrate and the second semiconductor film.
摘要:
Implementations of methods of forming a plurality of semiconductor die may include forming a damage layer beneath a surface of a die street in a semiconductor substrate, singulating the semiconductor substrate along the die street into a plurality of semiconductor die, and removing one or more particulates in the die street after singulating through applying sonic energy to the plurality of semiconductor die.
摘要:
Implementations of methods of forming a plurality of semiconductor die may include forming a damage layer beneath a surface of a die street in a semiconductor substrate, singulating the semiconductor substrate along the die street into a plurality of semiconductor die, and removing one or more particulates in the die street after singulating through applying sonic energy to the plurality of semiconductor die.
摘要:
A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
摘要:
A system for laser ashing of polyimide for a semiconductor manufacturing process is provided. The system includes: a semiconductor chip, a top chip attached to the semiconductor chip by a connection layer, a supporting material, a polyimide glue layer disposed between the supporting material and semiconductor chip, a plasma asher, and an ashing laser configured to ash the polyimide glue on the semiconductor chip.
摘要:
Disclosed are devices and methodologies for cleaning wafers in wafer processing operations such as solvent cleaning. In an example situation, a wafer that has been separated from a support plate can be cleaned. The wafer still needs to be handled carefully during such a cleaning operation. Various devices and methodologies that facilitate efficient handling of wafers and solvent cleaning operations are disclosed.
摘要:
Disclosed herein is a wafer processing method including a stacked member removing step of applying a laser beam having an absorption wavelength to a stacked member through a protective film along each division line formed on the front side of a wafer, thereby performing ablation to remove the stacked member present on each division line, a dividing step of applying an external force to the wafer to divide the wafer into individual device chips along each division line where a modified layer is previously formed, and a plasma etching step of supplying an etching gas in a plasma state to the wafer from the front side thereof after performing the stacked member removing step or after performing the dividing step, thereby removing damage due to the ablation in the stacked member removing step.
摘要:
In one embodiment, semiconductor die are singulated from a semiconductor wafer having a backmetal layer by placing the semiconductor wafer onto a carrier tape with the backmetal layer adjacent the carrier tape, forming singulation lines through the semiconductor wafer to expose the backmetal layer within the singulation lines, and separating portions of the backmetal layer using a fluid.
摘要:
In one embodiment, semiconductor die are singulated from a semiconductor wafer by placing the semiconductor wafer onto a carrier tape, forming singulation lines through the semiconductor wafer, and reducing the presence of residual contaminates on the semiconductor wafer.
摘要:
A solution for semiconductor wafer dicing is disclosed. The solution suppresses the adherence of contamination residues or particles, and reduces or eliminates the corrosion of the exposed metallization areas, during the process of dicing a wafer by sawing. The solution comprises at least one organic acid and/or salt thereof; at least a surfactant and/or at least a base; and deionized water, the composition has a pH is equal or greater than 4. The solution can further comprise, a chelating agent, a defoaming agent, or a dispersing agent.