Abstract:
An oil sump housing for an outboard motor of a marine vessel is provided. The oil sump housing includes an upper mounting flange including multiple upper mounting holes, a lower mounting flange including multiple lower mounting holes, and an inner housing wall and an outer housing wall extending between the upper mounting flange and the lower mounting flange. The inner housing wall defines a transmission mounting cavity, and the inner housing wall and the outer housing wall define an oil containment cavity that at least partially surrounds the transmission mounting cavity.
Abstract:
An oil sump housing for an outboard motor of a marine vessel is provided. The oil sump housing includes an upper mounting flange including multiple upper mounting holes, a lower mounting flange including multiple lower mounting holes, and an inner housing wall and an outer housing wall extending between the upper mounting flange and the lower mounting flange. The inner housing wall defines a transmission mounting cavity, and the inner housing wall and the outer housing wall define an oil containment cavity that at least partially surrounds the transmission mounting cavity.
Abstract:
A marine outboard engine has an upper motor cover, a lower cover, an engine, a driveshaft, a gear case, a rotor shaft, and a bladed rotor. First and second exhaust housings are disposed in the lower cover below the engine. The second exhaust housing at least partially surrounds the first exhaust housing. A first exhaust chamber is formed by the first exhaust housing. The first exhaust chamber fluidly communicates with the engine. A second exhaust chamber is formed between the second exhaust housing and the first exhaust housing. The second exhaust chamber fluidly communicates with the first exhaust chamber. A third exhaust chamber formed between the second exhaust housing and the first exhaust housing below the second exhaust chamber is also disclosed. The third exhaust chamber fluidly communicates with the second exhaust chamber and an exterior of the marine outboard engine.
Abstract:
A personal watercraft is disclosed with a hull, a seating assembly, and a four stroke internal combustion engine below the seating assembly. The engine has at least one intake valve for each of the combustion cylinder chambers, at least one exhaust valve for each of the combustion cylinder chambers, and a valve actuation assembly located in a cylinder head for operating the intake and exhaust valves. At least one air intake passageway is operatively coupled to the combustion cylinder chambers through the intake valves. An air intake manifold is connected to the cylinder head and operatively connected to the at least one air intake passageway. The engine also has a supercharger for boosting air to the air intake manifold. The watercraft also includes a propulsion unit, operatively coupled to the crankshaft, which is located on one end of the two ends of the crankcase.
Abstract:
A keel cooler having a standard header with an internal beveled bottom wall, with orifices on the inner wall of the exterior tubes extending into the header, the orifices being in the natural flow path of the coolant flow. The orifices are sufficiently large so as not to restrict the flow of coolant. A fluid flow diverter is additionally provided in the header of the keel cooler for facilitating coolant flow towards both the interior tubes and also towards the exterior tubes.
Abstract:
A personal watercraft includes a hull and an engine. The engine has an air intake system through which air is delivered to combustion chambers of the engine. An overturn switch detects overturn of the hull. A control device stops an operation of the engine based upon an output of the overturn switch. A throttle valve is disposed in the air intake system to be actuated by a throttle valve actuator. The control device controls the blocks the intake system based upon the output of the overturn switch to inhibit water from moving toward the combustion chambers. The control device allows the engine to be restarted during a preset period of time after stopping the engine operation.
Abstract:
A water-cooled vertical engine includes a cylinder block cooling water jacket formed in a cylinder block and a cylinder head cooling water jacket formed in a cylinder head, the jackets being substantially independent. Cooling water from a cooling water pump is supplied to the cylinder block cooling water jacket via through holes, and cooling water branching just before the cylinder block cooling water jacket is supplied to the cylinder head cooling water jacket via a pair of cooling water passages through gasket faces of the cylinder block and the cylinder head.
Abstract:
A telltale mechanism is provided with a valve that allows it to perform a dual function of providing a visual indicator of the operation of the cooling system of an engine and relieving water pressure within the cooling jacket of the engine. The valve provides a first fluid path through which a telltale stream is intended to flow and a second fluid path through which a pressure relief water stream is allowed to flow to maintain the pressure within the water jacket of an engine to a magnitude below a predetermined threshold.
Abstract:
An air intake assembly for a personal watercraft provides air to an internal combustion engine located within a hull cavity includes a housing having a generally horn-shaped configuration that includes a base and an outer end. The housing has an air passage that extends from a base to an outer end. An adaptor assembly connects the base to the hull and is arranged to form a seal around an opening in an upper portion of the hull. The adaptor assembly includes an opening aligned with the air passage. An air intake valve assembly is mounted in the opening with the valve assembly being arranged to be open to allow air flow into the hull when the upper portion of the housing points upward from a horizontal plane through the upper portion of the hull and being further arranged to close whenever the outer end of the housing has a downward pointing component.
Abstract:
An outboard motor water-cooled vertical engine is provided in which a crankshaft is disposed substantially vertically, a timing chain for transmitting a driving force of the crankshaft to a camshaft is disposed in an upper part of the cylinder block and a cylinder head, and an upper part of the timing chain is covered with a chain cover. Provided in the chain cover are thermostats for controlling the flow of cooling water in a cylinder block cooling water jacket and a cylinder head cooling water jacket. Therefore, the thermostats can be accessed from the top of the engine for maintenance without being obstructed by the timing chain, and moreover it is easy to manipulate a drain pipe for discharging cooling water from the thermostats.