摘要:
A power semiconductor device includes a semiconductor substrate having a wide bandgap semiconductor material and a first surface, an insulation layer above the first surface of the semiconductor substrate, the insulation layer including at least one opening extending through the insulation layer in a vertical direction, a front metallization above the insulation layer with the insulation layer being interposed between the front metallization and the first surface of the semiconductor substrate, and a metal connection arranged in the opening of the insulation layer and electrically conductively connecting the front metallization with the semiconductor substrate; wherein the front metallization includes at least one layer that is a metal or a metal alloy having a higher melting temperature than an intrinsic temperature of the wide bandgap semiconductor material of the semiconductor substrate.
摘要:
A method of manufacturing a bonding structure includes (a) providing a substrate, wherein the substrate includes a top surface and at least one bonding pad disposed adjacent to the top surface of the substrate, at least one bonding pad having a sloped surface with a first slope; (b) providing a semiconductor element, wherein the semiconductor element includes at least one pillar, and at least one pillar has a sidewall with a second slope, wherein the absolute value of the first slope is smaller than the absolute value of the second slope; and (c) bonding at least one pillar to a portion of the sloped surface of corresponding ones of the at least one bonding pad.
摘要:
In an embodiment of the present invention, a method of forming a semiconductor device includes providing a semiconductor substrate including a first chip region and a second chip region. A first contact pad is formed over the first chip region and a second contact pad is formed over the second chip region. The first and the second contact pads are at least as thick as the semiconductor substrate. The method further includes dicing through the semiconductor substrate between the first and the second contact pads. The dicing is performed from a side of the semiconductor substrate including the first contact pad and the second contact pad. A conductive liner is formed over the first and the second contact pads and sidewalls of the semiconductor substrate exposed by the dicing.
摘要:
Various embodiments provide a method of forming an interconnection between an electric component and an electronic component, wherein the method comprises forming a first interconnection sublayer on an electric component, wherein the first interconnection sublayer comprises a metal and has a main surface opposite to the electric component, wherein the main surface has a first surface roughness; forming a second interconnection sublayer on an electronic component, wherein the second interconnection sublayer comprises the metal and has a surface opposite to the electronic component, wherein the surface has a second surface roughness, wherein the first surface roughness and the second surface roughness are in the same order of magnitude; and interconnecting the first interconnection sublayer and the second interconnection sublayer by contacting the same and applying pressure and heat to the contacted first and second interconnection sublayers.
摘要:
It is an object of the present invention to provide a power semiconductor device, which is capable of being operable regardless of thermal stress generation, reducing a heat generation from wire, securing the reliability of bonding portion when the device is used for dealing with a large amount current and/or under a high temperature atmosphere, a method of manufacturing the device and a bonding wire. In a power semiconductor device in which a metal electrode (die electrode 3) on a power semiconductor die 2 and another metal electrode (connection electrode 4) are connected by metal wire 5 using wedge bonding connection, the metal wire is Ag or Ag alloy wire of which diameter is greater than 50 μm and not greater than 2 mm and the die 3 has thereon one or more metal and/or alloy layers, each of the layer(s) being 50 Å or more in thickness and a metal for the layer is selected from Ni, Cr, Cu, Pd, V, Ti, Pt, Zn, Ag, Au, W and Al.
摘要:
Provided are a semiconductor device and a bonding structure thereof, in which an inter-metal compound is not formed with a semiconductor die or a lead frame, thereby improving electrical and mechanical properties and wettability and suppressing conglomeration of a die bonding material. The semiconductor device includes a semiconductor die, a barrier layer formed on a surface of the semiconductor die, a first metal layer formed on the barrier layer, a central metal layer formed on the first metal layer, and a second metal layer formed on the central metal layer. Here, the first and second metal layers have a first melting temperature, and the central metal layer has a second melting temperature lower than the first melting temperature.
摘要:
There are disclosed herein various implementations of improved wafer level semiconductor packages. One exemplary implementation comprises forming a post-fabrication redistribution layer (post-Fab RDL) between first and second dielectric layers affixed over a surface of a wafer, and forming a window for receiving an electrical contact body in the second dielectric layer, the window exposing the post-Fab RDL. At least one of the first and second dielectric layers is a pre-formed dielectric layer, which may be affixed over the surface of the wafer using a lamination process. In one implementation, the window is formed using a direct laser ablation process.
摘要:
There are disclosed herein various implementations of improved wafer level semiconductor packages. One exemplary implementation comprises forming a post-fabrication redistribution layer (post-Fab RDL) between first and second dielectric layers affixed over a surface of a wafer, and forming a window for receiving an electrical contact body in the second dielectric layer, the window exposing the post-Fab RDL. At least one of the first and second dielectric layers is a pre-formed dielectric layer, which may be affixed over the surface of the wafer using a lamination process. In one implementation, the window is formed using a direct laser ablation process.
摘要:
Electronic device packages and related methods are provided. The electronic device package includes a first substrate having a first contact portion disposed thereon, a bump having a first contact surface connected to the first contact portion and a second contact surface disposed opposite to the first contact surface, and a buffer spring pad portion between the first contact portion of the first substrate and the first contact surface of the bump. The buffer spring pad portion includes at least two different conductive material layers which are stacked.
摘要:
A cylindrical bonding structure and its method of manufacture. The cylindrical bonding structure is formed over the bonding pad of a silicon chip and the chip is flipped over to connect with a substrate board in the process of forming a flip-chip package. The cylindrical bonding structure mainly includes a conductive pillar and a solder cap. The conductive pillar is formed over the bonding pad of the silicon chip and the solder cap is attached to the upper end of the conductive pillar. The solder cap has a melting point lower than the conductive pillar. The solder cap can be configured into a cylindrical, spherical or hemispherical shape. To fabricate the cylindrical bonding structure, a patterned mask layer having a plurality of openings that correspond in position to the bonding pads on the wafer is formed over a silicon wafer. Conductive material is deposited into the openings to form conductive pillars and finally a solder cap is attached to the end of each conductive pillar.