Abstract:
A package includes a device die, a molding material molding the device die therein, a through-via penetrating through the molding material, and an alignment mark penetrating through the molding material. A redistribution line is on a side of the molding material. The redistribution line is electrically coupled to the through-via.
Abstract:
A bump structure for electrically coupling semiconductor components is provided. The bump structure includes a first bump on a first semiconductor component and a second bump on a second semiconductor component. The first bump has a first non-flat portion (e.g., a convex projection) and the second bump has a second non-flat portion (e.g., a concave recess). The bump structure also includes a solder joint formed between the first and second non-flat portions to electrically couple the semiconductor components.
Abstract:
Cooling devices, packaged semiconductor devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, a cooling device for a semiconductor device includes a reservoir having a first plate and a second plate coupled to the first plate. A cavity is between the first plate and the second plate. A phase change material (PCM) is in the cavity. The cooling device is adapted to dissipate heat from a packaged semiconductor device.
Abstract:
A method includes mounting a wafer-level package substrate over a carrier, and pre-cutting the wafer-level package substrate to form trenches extending from a top surface of the wafer-level package substrate into the wafer-level package substrate. A plurality of dies is bonded over the wafer-level package substrate. The plurality of dies is molded in a molding material to form a wafer-level package, with the wafer-level package including the wafer-level package substrate, the plurality of dies, and the molding material. The carrier is detached from the wafer-level package. The wafer-level package is sawed into a plurality of packages, with each of the plurality of packages including a portion of the wafer-level package substrate and one of the plurality of dies.
Abstract:
A semiconductor device structure and method for forming the same are provided. The semiconductor device structure includes a substrate and a conductive pad formed on the substrate. The semiconductor device structure includes a protection layer formed over the conductive pad and a post-passivation interconnect (PPI) structure formed at least in the protection layer. The PPI structure is electrically connected to the conductive pad. The semiconductor device structure also includes a first moisture-resistant layer formed over the protection layer, and the protection layer and the first moisture-resistant layer are made of different materials. The semiconductor device structure further includes an under bump metallurgy (UBM) layer formed over the first moisture-resistant layer and connected to the PPI structure.
Abstract:
An embodiment of the disclosure is a structure comprising an interposer. The interposer has a test structure extending along a periphery of the interposer, and at least a portion of the test structure is in a first redistribution element. The first redistribution element is on a first surface of a substrate of the interposer. The test structure is intermediate and electrically coupled to at least two probe pads.
Abstract:
A package includes a first die and a second die underlying the first die and in a same first die stack as the first die. The second die includes a first portion overlapped by the first die, and a second portion not overlapped by the first die. A first Thermal Interface Material (TIM) is over and contacting a top surface of the first die. A heat dissipating lid has a first bottom surface contacting the first TIM. A second TIM is over and contacting the second portion of the second die. A heat dissipating ring is over and contacting the second TIM.
Abstract:
Chip packages and methods of manufacture thereof are disclosed. In some embodiments, a chip package may include: a chip having a contact pad disposed at a first side of the chip; a passivation layer over the first side of the chip, the passivation layer having an opening disposed over the contact pad; a polymer layer over the passivation layer, the polymer layer having an edge disposed over the contact pad; a conductive structure formed atop the contact pad, the conductive structure filling the opening of the passivation layer and covering the edge of the polymer layer; and a frontside redistribution layer (RDL) disposed over the conductive structure, the frontside RDL having a first portion electrically connected to the conductive structure and a second portion electrically connected to the first portion and extending laterally away from the first portion and the conductive structure.
Abstract:
Disclosed herein is a method of forming a device, comprising mounting a plurality of first interconnects on one or more first integrated circuit dies. One or more second integrated circuit dies are mounted on a first side of an interposer. The interposer is mounted at a second side to the first integrated circuit dies, the plurality of first interconnects disposed outside of the interposer. The interposer is mounted to a first side of a substrate by attaching the first interconnects to the substrate, the substrate in signal communication with one or more of the first integrated circuit dies through the first interconnects.
Abstract:
Methods of packaging semiconductor devices and packaged semiconductor devices are disclosed. In some embodiments, a method of packaging semiconductor devices includes coupling integrated circuit dies to a substrate, and disposing a molding material around the integrated circuit dies. A cap layer is disposed over the molding material and the plurality of integrated circuit dies.