Abstract:
A chip fabricated from a semiconductor material is disclosed. The chip may include active devices located below a first depth from a chip back side and a structure configured to remove heat from the chip. The structure may include microvias electrically insulated from the active devices and having a second depth, less than the first depth, from the back side towards the active devices. Each microvia may also have a fill material having a thermal conductivity greater than a semiconductor thermal conductivity. The structure may also include thermally conductive material regions on the back side of the chip in contact with sets of microvias. The structure may also include through-silicon vias electrically connected to the active devices, and extending from the back side to an active device side of the chip and configured to remove heat from the active devices to the back side of the chip.
Abstract:
[Problem] Provided is a technique for bonding chips efficiently onto a wafer to establish an electrical connection and raise mechanical strength between the chips and the wafer or between the chips that are chips laminated onto each other in the state that resin and other undesired residues do not remain on a bond interface therebetween.[Solution] A method for bonding plural chips each having a chip-side-bond-surface having metal regions to a substrate having plural bond portions has the step (S1) of subjecting the metal regions of the chip-side-bond-surface to surface activating treatment and hydrophilizing treatment; the step (S2) of subjecting the bond portions of the substrate to surface activating treatment and hydrophilizing treatment; the step (S3) of fitting the chips subjected to the surface activating treatment and the hydrophilizing treatment onto the corresponding bond portions of the substrate subjected to the surface activating treatment and the hydrophilizing treatment to bring the metal regions of the chips into contact with the bond portions of the substrate; and the step (S4) of heating the resultant structure, which includes the substrate, and the chips fitted onto the substrate.
Abstract:
A method for bonding first and second wafers by molecular adhesion. The method includes placing the wafers in an environment having a first pressure (P1) greater than a predetermined threshold pressure above which initiation of bonding wave propagation is prevented, bringing the first wafer and the second wafer into alignment and contact, and spontaneously initiating the propagation of a bonding wave between the wafers after they are in contact solely by reducing the pressure within the environment to a second pressure (P2) below the threshold pressure.
Abstract:
A semiconductor apparatus adhesive composition having excellent adhesion properties when pressure-bonded and has excellent connection reliability and insulation reliability when hardened and an adhesive sheet using this adhesive composition. An adhesive composition including: (A) a silicone resin constituted of a repeating unit represented by the following general formula (1); (B) a thermosetting resin; and (C) a compound having a flux activity, where R1 to R4 represent univalent hydrocarbon groups having carbon numbers from 1 to 8, which are equal to or different from each other; each of l and m is an integer from 1 to 100; each of a, b, c, and d is 0 or a positive number and meets 0
Abstract translation:一种半导体装置粘合剂组合物,当粘合时具有优异的粘合性能,并且当硬化时具有优异的连接可靠性和绝缘可靠性,以及使用该粘合剂组合物的粘合 一种粘合剂组合物,其包含:(A)由以下通式(1)表示的重复单元构成的有机硅树脂; (B)热固性树脂; 和(C)具有助焊剂活性的化合物,其中R 1至R 4表示碳数为1至8的一价烃基,它们彼此相同或不同; 1和m各自为1至100的整数; a,b,c和d中的每一个为0或正数,满足0 <(c + d)/(a + b + c + d) 并且X和Y各自为二价有机基团。
Abstract:
A layered chip package includes a main body and wiring. The main body includes: a main part having a top surface and a bottom surface and including three or more layer portions stacked on one another; a plurality of first terminals disposed on the top surface of the main part; and a plurality of second terminals disposed on the bottom surface of the main part. Each layer portion includes a semiconductor chip having first and second surfaces, and a plurality of electrodes electrically connected to the wiring. The plurality of electrodes are disposed on a side of the first surface of the semiconductor chip. A first layer portion located closest to the top surface of the main part and a second layer portion located closest to the bottom surface of the main part are arranged so that the second surfaces of their respective semiconductor chips face toward each other. The plurality of first terminals are formed by using the plurality of electrodes of the first layer portion. The plurality of second terminals are formed by using the plurality of electrodes of the second layer portion.
Abstract:
The present invention relates to a method for molecular adhesion bonding between at least a first wafer and a second wafer involving aligning the first and second wafers, placing the first and second wafers in an environment having a first pressure (P1) greater than a predetermined threshold pressure; bringing the first wafer and the second wafer into alignment and contact; and initiating the propagation of a bonding wave between the first and second wafer after the wafers are aligned and in contact by reducing the pressure within the environment to a second pressure (P2) below the threshold pressure. The invention also relates to the three-dimensional composite structure that is obtained by the described method of adhesion bonding.
Abstract:
A ramp-stack chip package is described. This chip package includes a vertical stack of semiconductor dies or chips that are offset from each other in a horizontal direction, thereby defining a terrace with exposed pads. A high-bandwidth ramp component, which is positioned approximately parallel to the terrace, is electrically and mechanically coupled to the exposed pads. For example, the ramp component may be coupled to the semiconductor dies using: solder, microsprings and/or an anisotropic conducting film. Furthermore, each of the semiconductor dies includes a static bend so that an end segment of each of the semiconductor dies is parallel to the direction and is mechanically coupled to the ramp component. These end segments may facilitate high-bandwidth communication of signals between the chips and the ramp component, for example, via proximity communication.
Abstract:
A chip package is disclosed. The package includes a carrier substrate and at least two semiconductor chips thereon. Each semiconductor chip includes a plurality of conductive pads. A position structure is disposed on the carrier substrate to fix locations of the semiconductor chips at the carrier substrate. A fill material layer is formed on the carrier substrate, covers the semiconductor chips and the position structure, and has a plurality of openings correspondingly exposing the conductive pads. A redistribution layer (RDL) is disposed on the fill material layer and is connected to the conductive pads through the plurality of openings. A protective layer covers the fill material layer and the RDL. A plurality of conductive bumps is disposed on the protective layer and is electrically connected to the RDL. A fabrication method of the chip package is also disclosed.
Abstract:
A layered chip package includes a main body and wiring, the wiring including a plurality of wires disposed on a side surface of the main body. The main body includes a main part and a plurality of terminals. The main part includes a plurality of layer portions stacked. The terminals are disposed on at least either one of the top and bottom surfaces of the main part and electrically connected to the wires. Each of the layer portions includes a semiconductor chip, and a plurality of electrodes that are electrically connected to the wires. The electrodes include a plurality of first electrodes that are intended to establish electrical connection to the semiconductor chip, and a plurality of second electrodes that are not in contact with the semiconductor chip. In at least one of the layer portions, the first electrodes are in contact with and electrically connected to the semiconductor chip.
Abstract:
The present invention relates to a method for molecular adhesion bonding between at least a first wafer and a second wafer involving aligning the first and second wafers, placing the first and second wafers in an environment having a first pressure (P1) greater than a predetermined threshold pressure; bringing the first wafer and the second wafer into alignment and contact; and initiating the propagation of a bonding wave between the first and second wafer after the wafers are aligned and in contact by reducing the pressure within the environment to a second pressure (P2) below the threshold pressure. The invention also relates to the three-dimensional composite structure that is obtained by the described method of adhesion bonding.