Imaging device
    1.
    发明授权

    公开(公告)号:US12230660B2

    公开(公告)日:2025-02-18

    申请号:US17619683

    申请日:2020-06-23

    Abstract: A second substrate including a pixel circuit that outputs a pixel signal on a basis of electric charges outputted from the sensor pixel and a third substrate including a processing circuit that performs signal processing on the pixel signal are provided. The first substrate, the second substrate, and the third substrate are stacked in this order. A semiconductor layer including the pixel circuit is divided by an insulating layer. The insulating layer divides the semiconductor layer to allow a center position of a continuous region of the semiconductor layer or a center position of a region that divides the semiconductor layer to correspond to a position of an optical center of the sensor pixel, in at least one direction on a plane of the sensor pixel perpendicular to an optical axis direction.

    Epitaxially integrated protection diodes for monochromatic photosensitive diodes

    公开(公告)号:US12199112B1

    公开(公告)日:2025-01-14

    申请号:US17684955

    申请日:2022-03-02

    Abstract: Monochromatic photosensitive devices (MPDs) having series connected photosensitive diode cell arrays in two configurations are disclosed. The MPDs employ a protection diode to bypass either one or multiple photosensitive diodes in each photosensitive diode cell should a photosensitive diode fail as an open circuit or become blocked from the monochromatic light. The protection diode is vertically (epitaxial growth direction) integrated with a photosensitive diode layer structure during epitaxial growth, thereby permitting monolithic fabrication of the one or multiple photosensitive diode cells. The bulk of the one or multiple photosensitive diodes are formed of a material having a bandgap corresponding to the wavelength of the monochromatic light, while the protection diodes are formed of a material having a bandgap greater than the wavelength of the monochromatic light. The monochromatic light passes through the protection diode before being absorbed by the one or multiple photosensitive diodes.

    Complementary metal-oxide semiconductor (CMOS) image sensors with saddle-gate source follower for imaging pixels

    公开(公告)号:US12142620B2

    公开(公告)日:2024-11-12

    申请号:US17527065

    申请日:2021-11-15

    Abstract: A saddle-gate source follower transistor is described, such as for integration with in-pixel circuitry of complementary metal-oxide semiconductor (CMOS) image sensor (CIS) pixels. The saddle-gate source-follower transistor structure can include a channel region having a three-dimensional geometry defined on its axial sides by trenches. A gate oxide layer is formed over the top and axial sides of the channel region, and a saddle-gate structure is formed on the gate oxide layer. As such, the saddle-gate structure includes a seat portion extending over the top of the channel region, and first and second fender portions extending over the first and second axial sides of the channel region, such that the first and second fender portions are buried below an upper surface of the semiconductor substrate (e.g., buried into trenches formed in side isolation regions).

    Dark-current inhibiting image sensor and method

    公开(公告)号:US12107107B2

    公开(公告)日:2024-10-01

    申请号:US17530296

    申请日:2021-11-18

    Abstract: A dark-current-inhibiting image sensor includes a semiconductor substrate, a thin and a thin junction. The semiconductor substrate includes a front surface, a back surface opposite the front surface, a photodiode, and a concave surface between the front surface and the back surface. The concave surface extends from the back surface toward the front surface, and defines a trench that surrounds the photodiode in a cross-sectional plane parallel to the back surface. The thin junction extends from the concave surface into the semiconductor substrate, and is a region of the semiconductor substrate. The semiconductor substrate includes a first substrate region, located between the thin junction and the photodiode, that has a first conductive type. The photodiode and the thin junction have a second conductive type opposite the first conductive type.

Patent Agency Ranking