Abstract:
An apparatus (100) including multiple biological chips (110,120) includes a substrate (101), a first adhesive layer (134) disposed on the substrate (101), a first biological chip (110) and a second biological chip (120) disposed on the first adhesive layer (134) and attached to the substrate (101) by the adhesive layer (134). The apparatus (100) further includes a filler (130) disposed between the first biological chip (110) and the second biological chip (120). The filler (130) includes a second adhesive layer (135) extending between a side surface (114) of the first biological chip (110) and a side surface (124) of the second biological chip (120), the second adhesive layer (135) attaching the first biological chip (110) to the second biological chip (120). The filler (130) also includes a surface layer (132) disposed over the second adhesive layer (135). The surface layer (132) has a hydrophobic surface that is co-planar with a top surface (111) of the first biological chip (110) and a top surface (121) of the second biological chip (120).
Abstract:
Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes performing a bonding process to bond a first semiconductor substrate to a second semiconductor substrate. A shift measurement process is performed on the first and second semiconductor substrates. The shift measurement process includes moving a plurality of substrate pins from a plurality of initial positions to a plurality of measurement positions. The plurality of substrate pins are disposed outside of perimeters of the first and second semiconductor substrates. A shift value is determined between the first semiconductor substrate and the second semiconductor substrate based at least in part on a difference between the plurality of initial positions and the plurality of measurement positions.
Abstract:
A multi-die package includes a thermally conductive flange, a first semiconductor die made of a first semiconductor material attached to the thermally conductive flange via a first die attach material, a second semiconductor die attached to the same thermally conductive flange as the first semiconductor die via a second die attach material, and leads attached to the thermally conductive flange or to an insulating member secured to the flange. The leads are configured to provide external electrical access to the first and second semiconductor dies. The second semiconductor die is made of a second semiconductor material different than the first semiconductor material. Additional multi-die package embodiments are described.
Abstract:
There is provided a semiconductor module package including: a base substrate formed by mounting one or more first semiconductor devices thereon; a lead frame formed on a top surface of the first semiconductor device and having an inlet formed to inject a solder paste; and spaces inserted between the first semiconductor device and the lead frame to form a separation space, wherein the solder paste is filled in the separation space.
Abstract:
A method for transferring light-emitting elements onto a package substrate includes: providing a light-emitting unit including a temporary substrate and light-emitting elements; disconnecting the light-emitting elements from the temporary substrate to allow the light-emitting elements to float on a fluid; adjusting spacings between the light-emitting elements to have a predetermined size by controlling flow of the fluid; placing a package substrate into the fluid, followed by aligning the light-emitting elements with connecting pads of the package substrate so as to correspondingly place the light-emitting elements on the connecting pads; and removing the package substrate with the light-emitting elements from the fluid.
Abstract:
There is provided a semiconductor module package including: a base substrate formed by mounting one or more first semiconductor devices thereon; a lead frame formed on a top surface of the first semiconductor device and having an inlet formed to inject a solder paste; and spaces inserted between the first semiconductor device and the lead frame to form a separation space, wherein the solder paste is filled in the separation space.
Abstract:
The present invention is related to a method for aligning and bonding a first element (1) and a second element (2), comprising: obtaining a first element (1) having at least one protrusion, the protrusion having a base portion (12) made of a first material and an upper portion (13) made of a second, deformable material, different from the first material; obtaining a second element (2) having a first main surface and second main surface (8) and at least one through-hole between the first and second main surface; placing the first and second element onto each other; receiving in the through-hole of the second element (2) the protrusion of the first element (1), the protrusion being arranged and constructed so as to extend from an opening of the through-hole in the first main surface to a position beyond an opening of the through-hole in the second main surface (8); deforming the deformable portion (13) of the protrusion, such that the deformed portion mechanically fixes the second element (2) on the first element (1).
Abstract:
An integrated circuit package system that includes: providing an electrical interconnect system including a support structure and a lead-finger system; processing a top edge of the support structure along an outermost periphery thereof, to include a recess for preventing mold bleed, the recess surrounded by the lead finger system; and encapsulating the recess and the electrical interconnect system with an encapsulation material to interlock the encapsulation material.
Abstract:
Provided is a wiring substrate, a semiconductor device package including the wiring substrate, and methods of fabricating the same. The semiconductor device package may include a wiring substrate which may include a base film. The base film may include a mounting region and a non-mounting region. The wiring substrate may further include first wiring patterns on the non-mounting region and extending into the mounting region, second wiring patterns on the first wiring patterns of the non-mounting region, and an insulating layer on the non-mounting region, and a semiconductor device which may include bonding pads. At least one of side surfaces of the second wiring patterns adjacent to the mounting region may be electrically connected to at least one of the bonding pads of the semiconductor device.
Abstract:
A Radio Frequency Identification (RFID) device. The RFID device comprises an antenna assembly and a resonator assembly. The antenna assembly comprises a first substrate and an antenna element. The resonator assembly comprises a second substrate having an integrated circuit connected to a resonator loop. The first substrate and the second substrate are attached to one another. The integrated circuit electrically couples to the antenna element without a direct mechanical contact.