Abstract:
The present application discloses a semiconductor device with integrated decoupling alignment features. The semiconductor device includes a first wafer comprising a first substrate having a dielectric stack, a decoupling feature positioned in the dielectric stack under one of the plurality of first alignment marks, a plurality of first alignment marks positioned on the first substrate and parallel to each other; and a second wafer positioned on the first wafer and comprising a plurality of second alignment marks positioned above the plurality of first alignment marks. The plurality of second alignment marks are arranged parallel to the plurality of first alignment marks and adjacent to the plurality of first alignment marks in a top-view perspective. The plurality of first alignment marks and the plurality of second alignment marks comprise a fluorescence material. The decoupling feature has a bottle-shaped cross-sectional profile, and the decoupling feature comprises a porous low-k material.
Abstract:
In some embodiments, the present disclosure relates to an integrated chip that includes bonding structure arranged directly between a first substrate and a second substrate. The first substrate includes a first transparent material and a first alignment mark. The first alignment mark is arranged on an outer region of the first substrate and also includes the first transparent material. The first alignment mark is defined by surfaces of the first substrate that are arranged between an uppermost surface of the first substrate and a lowermost surface of the first substrate. The second substrate includes a second alignment mark on an outer region of the second substrate. The second alignment mark directly underlies the first alignment mark, and the bonding structure is arranged directly between the first alignment mark and the second alignment mark.
Abstract:
A bonding apparatus bonds a first substrate having a first alignment mark and a second substrate having a second alignment mark. A first radiation unit radiates white light to an imaging area of a first imaging unit when the second alignment mark is imaged by the first imaging unit. A second radiation unit radiates white light to an imaging area of a second imaging unit when the first alignment mark is imaged by the second imaging unit. A controller detects positions of the first alignment mark and the second alignment mark by processing images obtained by the first imaging unit and the second imaging unit, corrects the detected position of the first alignment mark based on a relationship between a wavelength and an intensity of reflection light reflected from the first substrate, and controls a moving unit based on the corrected position of the first alignment mark.
Abstract:
A press fitting head comprising an elastic member in a part where the press fitting head contacts a semiconductor device, and an alignment mark recognition area capable of detecting an optically readable marker provided on a surface to be contacted to the semiconductor device is provided. Additionally, a semiconductor manufacturing apparatus in which the press fitting head is applied is provided.
Abstract:
A first insulating film is applied onto a joining face of a semiconductor device including a connection terminal on a joining face, and the connection terminal is embedded inside the first insulating film. The second insulating film is formed on a joining target face of a joining target, which includes a connection target terminal on the joining target face, and the connection target terminal is embedded inside the second insulating film. The semiconductor device and the joining target are joined together by applying pressure and causing the semiconductor device and the joining target to make contact with each other.
Abstract:
Provided is a flip-chip bonding apparatus (500) capable of stacking and bonding a second-layer of the semiconductor chip (30) onto a first-layer of the semiconductor chip (20) having first through-silicon vias, the second-layer of the semiconductor chip (30) having second through-silicon vias at positions corresponding to the first through-silicon vias. The flip-chip bonding apparatus (500) includes: a double-view camera (16) configured to take images of thechips (20) and (30); and a control unit (50) having a relative-position detection program (53) for detecting relative positions of the first-layer of the semiconductor chip (20) and the second-layer of the semiconductor chip (30) that are stacked and bonded based on an image of the first through-silicon vias on a surface of the first-layer of the semiconductor chip (20) taken by the double-view camera (16) before stacked bonding, and an image of the second through-silicon vias on a surface of the second-layer of the semiconductor chip (30) taken by the double-view camera (16) after stacked bonding. This provides accurate connection between through-silicon vias using a simple method.
Abstract:
Structures and processes for die stacking using an opaque or translucent pre-applied underfill material generally include selectively applying a low surface tension material to at least a portion of an alignment mark surface on a die; and applying the opaque or translucent underfill material to the die surface, wherein the underfill material does not wet or adhere to the low surface tension material such that the alignment mark surface is free of underfill material.
Abstract:
An assembly component and a technique for assembling a chip package using the assembly component are described. This chip package includes a set of semiconductor dies that are arranged in a stack in a vertical direction, which are offset from each other in a horizontal direction to define a stepped terrace at one side of the vertical stack. Moreover, the chip package may be assembled using the assembly component. In particular, the assembly component may include a pair of stepped terraces that approximately mirror the stepped terrace of the chip package and which provide vertical position references for an assembly tool that positions the set of semiconductor dies in the vertical stack during assembly of the chip package.
Abstract:
A semiconductor device including a semiconductor element; a pad electrode that is formed on the semiconductor element; an alignment mark that is formed on the semiconductor element; a connection electrode that is formed on the pad electrode; and an underfill resin that is formed to cover the connection electrode. The height of the alignment mark from the semiconductor element is greater than that of the connection electrode.
Abstract:
A layered chip package includes a main body and wiring. The main body has a main part. The main part has a top surface and a bottom surface and includes a plurality of layer portions that are stacked. The wiring includes a plurality of lines passing through all the plurality of layer portions. Each layer portion includes a semiconductor chip and a plurality of electrodes. The semiconductor chip has a first surface, and a second surface opposite thereto. The plurality of electrodes are disposed on a side of the first surface of the semiconductor chip. The plurality of layer portions include two or more pairs of first and second layer portions in each of which the first and second layer portions are arranged so that the first or second surfaces of the respective semiconductor chips face each other. The plurality of electrodes include a plurality of first connection parts and a plurality of second connection parts. In the first layer portion, the plurality of first connection parts are in contact with the plurality of lines. In the second layer portion, the plurality of second connection parts are in contact with the plurality of lines.