Abstract:
A semiconductor integrated circuit device includes a first back-end-of-line region coupled to a first side of a front-end-of-line region, a second back-end-of-line region coupled to a second side of the front-end-of-line region, and a thermally conducting solder at least partially surrounding a perimeter of the front-end-of-line region, the first back-end-of-line region and the second back-end-of-line region.
Abstract:
The present invention provides a eutectic solder structure for a chip including a substrate and a solder structure on the substrate. The solder structure includes an alternate lamination of a plurality of first metal layers and a plurality of second metal layers, wherein each second metal layer has a continuous region and a plurality of openings and the melting point of the plurality of second metal layers is higher than that of the plurality of first metal layers. The eutectic solder structure for a chip also includes a chip on the solder structure, wherein the chip is bonded to the substrate by a eutectic reaction of the solder structure.
Abstract:
A stacking carrier and a stacking method are provided. The stacking method is used between a wafer and a stacking carrier having the same shape. The stacking method includes the following steps. Firstly, an adhesive layer is coated on a surface of the carrier. Then, the adhesive layer corresponding to an edge of the carrier is partially removed, thereby defining at least one adhesive layer indentation. Afterwards, the wafer is stacked on the carrier through the adhesive layer having the adhesive layer indentation.
Abstract:
A method forms a first active electronic layer, prints an array of pillars on the first active electronic layer, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the curable polymer with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer. Another method provides a substrate having selected areas, prints an array of pillars on the substrate, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer corresponding to the selected areas. Another method forms a first active electronic layer on a substrate, prints an array of conductive pillars on the active electronic layer on a substrate, dispenses a curable polymer on the array of conductive pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from the upper surfaces of the conductive pillars, curing the curable polymer to produce a hardened polymer, and forms a second active electronic layer on the hardened polymer such that the second active electronic layer is in electrical connection with the first active electronic layer through the conductive pillars.
Abstract:
A semiconductor structure includes a substrate component, an IC die component over the substrate component, and a composite redistribution structure interposed between and electrically coupled to the substrate and IC die components. The composite redistribution structure includes a local interconnect component between a first redistribution structure overlying the substrate component and a second redistribution structure underlying the IC die component, and an insulating encapsulation between the first and second redistribution structures and embedding the local interconnect component therein. The local interconnect component includes TSVs penetrating through a substrate and electrically coupled to first and second conductive connectors, the first conductive connectors between the first redistribution structure and a first side of the substrate, the second conductive connectors between the second redistribution structure and a second side of the substrate, and a first insulating layer between the first redistribution structure and the first side and laterally covering the first conductive connectors.
Abstract:
A bond tip for thermocompression bonding a bottom surface includes a die contact area and a low surface energy material covering at least a portion of the bottom surface. The low surface energy material may cover substantially all of the bottom surface, or only a peripheral portion surrounding the die contact area. The die contact area may be recessed with respect to the peripheral portion a depth at least as great as a thickness of a semiconductor die to be received in the recessed die contact area. A method of thermocompression bonding is also disclosed.
Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can enhance adhesiveness, moisture-resistant adhesion reliability, and cooling/heating cycle reliability. An inkjet adhesive according to the present invention comprises a photocurable compound, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the compound capable of reacting with the thermosetting compound contains aromatic amine.
Abstract:
A stacking carrier and a stacking method are provided. The stacking method is used between a wafer and a stacking carrier having the same shape. The stacking method includes the following steps. Firstly, an adhesive layer is coated on a surface of the carrier. Then, the adhesive layer corresponding to an edge of the carrier is partially removed, thereby defining at least one adhesive layer indentation. Afterwards, the wafer is stacked on the carrier through the adhesive layer having the adhesive layer indentation.
Abstract:
A method forms a first active electronic layer, prints an array of pillars on the first active electronic layer, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the curable polymer with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer. Another method provides a substrate having selected areas, prints an array of pillars on the substrate, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer corresponding to the selected areas. Another method forms a first active electronic layer on a substrate, prints an array of conductive pillars on the active electronic layer on a substrate, dispenses a curable polymer on the array of conductive pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from the upper surfaces of the conductive pillars, curing the curable polymer to produce a hardened polymer, and forms a second active electronic layer on the hardened polymer such that the second active electronic layer is in electrical connection with the first active electronic layer through the conductive pillars.
Abstract:
An electrical device includes a substrate, an insulating layer supported by the substrate, and an electrically conductive vertical interconnect disposed in a via hole of the insulating layer. The insulating layer may be configured to provide a coefficient of thermal expansion (CTE) that is equal to or greater than a CTE of the vertical interconnect to thereby impart axial compressive forces at opposite ends of the interconnect. The vertical interconnect may be a hybrid interconnect structure including a low CTE conductor post having a pocket that contains a high CTE conductor contact. At low operating temperatures, the high CTE conductor contact is under tension due to the higher CTE, and thus the high CTE conductor contact relieves strain in the device by void expansion and elongation.