Abstract:
Provided is a method for producing a cured product film, which is capable of increasing the formation accuracy of a fine cured product film and also increasing the adhesion of the cured product film. The method for producing a curable film according to the present invention includes an application step in which a curable composition that is photocurable and thermocurable and also is in liquid form is applied using an ink jet device, a first light irradiation step in which the curable composition is irradiated with light from a first light irradiation part, and a heating step in which a precured product film irradiated with light is heated, the ink jet device has an ink tank to store the curable composition, a discharge part, and a circulation flow path part, and in the application step, the curable composition is applied while being circulated in the ink jet device.
Abstract:
Provided is a curable composition for inkjet, which can have improved storage stability. The curable composition for inkjet according to the present invention can be applied in an inkjet mode, and can be cured by the irradiation with light and the application of heat, the curable composition for inkjet according to the present invention comprises a polyfunctional compound having at least two (meth)acryloyl groups, a compound having a cyclic ether group, a heat-curing agent and a color material which cannot be dissolved in the polyfunctional compound and which is dissolved in the curable composition.
Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can reduce an outgas at the time of being exposed to high temperatures, and can enhance moisture-resistant reliability. An inkjet adhesive according to the present invention comprises a first photocurable compound having one (meth)acrylol group, a second photocurable compound having two or more (meth)acrylol groups, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the first photocurable compound contains alkyl (meth)acrylate having 8 to 21 carbon atoms.
Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can reduce an outgas at the time of being exposed to high temperatures, and can enhance moisture-resistant reliability. An inkjet adhesive according to the present invention comprises a first photocurable compound having one (meth)acrylol group, a second photocurable compound having two or more (meth)acrylol groups, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the first photocurable compound contains alkyl (meth)acrylate having 8 to 21 carbon atoms.
Abstract:
Provided is a curable composition for inkjet which can have a prolonged pot life even under an environment in an inkjet device that is warmed to 50° C. or higher and which can be cured into a cured product having improved heat resistance and insulation reliability, in spite of the fact that a thermally curable compound is used in the curable composition. The curable composition for inkjet according to the present invention contains a photocurable compound, a thermally curable compound, a photopolymerization initiator and a thermal curing agent and does not contain a solvent or contains the solvent, wherein the content of the solvent in 100% by weight of the curable composition is 1% by weight or less when the curable composition for inkjet contains the solvent, the photocurable compound contains a polyfunctional compound having at least two (meth)acryloyl groups, and the thermal curing agent is an aromatic amine having at least one benzene ring and at least two amino groups.
Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can enhance adhesiveness, moisture-resistant adhesion reliability, and cooling/heating cycle reliability. An inkjet adhesive according to the present invention comprises a photocurable compound, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the compound capable of reacting with the thermosetting compound contains aromatic amine.
Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can enhance adhesiveness, moisture-resistant adhesion reliability, and cooling/heating cycle reliability. An inkjet adhesive according to the present invention comprises a photocurable compound, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the compound capable of reacting with the thermosetting compound contains aromatic amine.
Abstract:
Provided is an inkjet adhesive which is applied using an inkjet device, wherein the adhesive can suppress generation of voids in the adhesive layer and, after bonding, can enhance adhesiveness, moisture-resistant adhesion reliability, and cooling/heating cycle reliability. An inkjet adhesive according to the present invention comprises a photocurable compound, a photo-radical initiator, a thermosetting compound having one or more cyclic ether groups or cyclic thioether groups, and a compound capable of reacting with the thermosetting compound, and the compound capable of reacting with the thermosetting compound contains aromatic amine.
Abstract:
Provided is a method for producing an electronic component, which is capable of forming a cured adhesive layer easily with high accuracy.The method for producing a curable film electronic component according to the present invention includes an application step in which an adhesive is applied onto a first electronic component body using an ink jet device to form an adhesive layer, a first light irradiation step in which an adhesive layer is irradiated with light from a first light irradiation part, an attachment step in which a second electronic component body is disposed on the adhesive layer irradiated with light and attached, and a step in which the adhesive layer is cured by heating, thereby giving an electronic component, the ink jet device includes an ink tank to store the adhesive, a discharge part, and a circulation flow path part, and in the application step, the adhesive is applied while being circulated in the ink jet device.
Abstract:
Provided is a method for producing a cured product film, which is capable of increasing the formation accuracy of a fine cured product film and also increasing the adhesion of the cured product film.The method for producing a curable film according to the present invention includes an application step in which a curable composition that is photocurable and thermocurable and also is in liquid form is applied using an ink jet device, a first light irradiation step in which the curable composition is irradiated with light from a first light irradiation part, and a heating step in which a precured product film irradiated with light is heated, the ink jet device has an ink tank to store the curable composition, a discharge part, and a circulation flow path part, and in the application step, the curable composition is applied while being circulated in the ink jet device.