摘要:
A chemical mechanical polishing (CMP) device for processing a wafer is provided which includes a plate for supporting the wafer to be processed in a face-up orientation, a polishing head opposing the plate, wherein the polishing head includes a rotatable polishing pad operable to contact the wafer while the polishing pad is rotating, and a slurry coating system providing a slurry to the polishing pad for polishing the wafer.
摘要:
A method of forming a device includes providing a substrate, and forming a solder bump over the substrate. A minor element is introduced to a region adjacent a top surface of the solder bump. A re-flow process is then performed to the solder bump to drive the minor element into the solder bump.
摘要:
A sidewall protection structure is provided for covering at least a portion of a sidewall surface of a bump structure, in which a protection structure on the sidewalls of a Cu pillar and a surface region of an under-bump-metallurgy (UBM) layer is formed of at least one non-metal material layers, for example a dielectric material layer, a polymer material layer, or combinations thereof.
摘要:
An electroless plating apparatus is provided. The electroless plating apparatus includes a wafer holder; a chemical dispensing nozzle over the wafer holder; a conduit connected to the chemical dispensing nozzle; and a radiation source over the wafer holder.
摘要:
An embodiment is a method for forming a semiconductor assembly comprising cleaning a connector comprising copper formed on a substrate, applying cold tin to the connector, applying hot tin to the connector, and spin rinsing and drying the connector.
摘要:
A rapid cooling system for a rapid thermal processing chamber includes a rapid thermal processing chamber having a wafer support for supporting a wafer. A tank having a supply of cooling liquid is provided in fluid communication with the chamber. A pump is provided in fluid communication with the rapid thermal processing chamber and the tank for pumping the cooling liquid from the tank to the chamber and cooling the wafer during the cooling phase of rapid thermal processing.
摘要:
The substrate with through silicon plugs (or vias) described above removes the need for conductive bumps. The process flow is very simple and cost efficient. The structures described combines the separate TSV, redistribution layer, and conductive bump structures into a single structure. By combining the separate structures, a low resistance electrical connection with high heat dissipation capability is created. In addition, the substrate with through silicon plugs (or vias, or trenches) also allows multiple chips to be packaged together. A through silicon trench can surround the one or more chips to provide protection against copper diffusing to neighboring devices during manufacturing. In addition, multiple chips with similar or different functions can be integrated on the TSV substrate. Through silicon plugs with different patterns can be used under a semiconductor chip(s) to improve heat dissipation and to resolve manufacturing concerns.
摘要:
Apparatus and methods for providing solder pillar bumps. Pillar bump connections are formed on input/output terminals for integrated circuits by forming a pillar of conductive material using plating of a conductive material over terminals of an integrated circuit. A base portion of the pillar bump has a greater width than an upper portion. A cross-section of the base portion of the pillar bump may make a trapezoidal, rectangular or sloping shape. Solder material may be formed on the top surface of the pillar. The resulting solder pillar bumps form fine pitch package solder connections that are more reliable than those of the prior art.
摘要:
A mold includes a top portion, and an edge ring having a ring-shape. The edge ring is underlying and connected to edges of the top portion. The edge ring includes air vents. The edge ring further encircles the inner space under the top portion of the mold. A plurality of injection ports is connected to the inner space of the mold. The plurality of injection ports is substantially aligned to a straight line crossing a center of the top portion of the mold. The plurality of injection ports has different sizes.
摘要:
The package substrates with through silicon plugs (or vias) described above provide lateral and vertical heat dissipation pathways for semiconductor chips that require thermal management. Designs of through silicon plugs (TSPs) with high duty ratios can most effectively provide heat dissipation. TSP designs with patterns of double-sided combs can provide high duty ratios, such as equal to or greater than 50%. Package substrates with high duty ratios are useful for semiconductor chips that generate large amount of heat. An example of such semiconductor chip is a light-emitting diode (LED) chip.