摘要:
An electronic device with a multi-layer contact and a system is disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate having a first electrode terminal located on a first surface and a second surface electrode terminal located on a second surface, the first surface being opposite to the second surface, an electrical contact layer disposed directly on the first electrode terminal, a functional layer directly disposed on the electrical contact layer, an adhesion layer directly disposed on the functional layer, a solder layer directly disposed on the adhesion layer; and a protection layer directly disposed on the solder layer, wherein the semiconductor device is a power semiconductor device configured to provide a vertical current flow.
摘要:
A semiconductor device comprises a first metal lead frame portion with a chip mounting surface, a second metal lead frame portion, and a semiconductor chip with a first surface facing and attached to the chip mounting surface of the first metal lead frame part and a second surface facing away from the chip mounting surface of the first metal lead frame part. A connector portion is electrical connected to the second metal lead frame portion and is attached to the second surface of the semiconductor chip. The connector portion covers the entirety of a planar area of the semiconductor chip when viewed along a direction orthogonal to second surface of the semiconductor chip.
摘要:
An electronic device includes a semiconductor die having a lower surface, a sintered metallic layer underlying the lower surface of the semiconductor die, a conductive layer underlying the sintered metallic layer, and a conductive substrate underlying the conductive layer.
摘要:
A semiconductor device has a leadframe with a first (401a) and a parallel second surface, and an assembly pad (410) bordered by two opposing sides, which include a plurality of through-holes (420) from the first to the second pad surface. Another pad side includes one or more elongated windows (421) between the pad surfaces. The second pad surface includes a plurality of grooves. The leadframe further has a plurality of leads (430) with opposite elongated sides castellated by indents (431). Layers (440) of bondable metals are restricted to localized areas surrounding bond spots. A semiconductor chip (450) is attached to the pad and wire-bonded (460) to the bond spots. A package (470) encapsulates the chip, wires, pad, and lead portions, and secures the leadframe into the package by filling the through-holes, windows, grooves, and indents.
摘要:
A semiconductor device has a leadframe with a first (401a) and a parallel second surface, and an assembly pad (410) bordered by two opposing sides, which include a plurality of through-holes (420) from the first to the second pad surface. Another pad side includes one or more elongated windows (421) between the pad surfaces. The second pad surface includes a plurality of grooves. The leadframe further has a plurality of leads (430) with opposite elongated sides castellated by indents (431). Layers (440) of bondable metals are restricted to localized areas surrounding bond spots. A semiconductor chip (450) is attached to the pad and wire-bonded (460) to the bond spots. A package (470) encapsulates the chip, wires, pad, and lead portions, and secures the leadframe into the package by filling the through-holes, windows, grooves, and indents.
摘要:
A semiconductor device has a semiconductor element provided with a functional surface on which a functional circuit is formed and with a back surface facing in the opposite direction to the functional surface, while also having a lead supporting the semiconductor element and electrically connected to the semiconductor element, and a resin package covering at least a portion of the semiconductor element and the lead. The semiconductor element has a functional surface side electrode formed on the functional surface and equipped with a functional surface side raised part that projects in the direction in which the functional surface faces. The functional surface side raised part of the functional surface side electrode is joined to the lead by solid state bonding.
摘要:
A chip package and methods of manufacturing the same are disclosed. In particular, a chip package comprising a ball grid array is disclosed in which the chip package includes a package substrate supporting the ball grid array and in which the chip package further includes a warpage control frame that helps to minimize or mitigate warpage of the chip package.
摘要:
According to an embodiment, a method for manufacturing a semiconductor device includes a placement step and a bonding step. The placement step faces a semiconductor active portion toward a support substrate portion via a bonding portion disposed between the semiconductor active portion and the support substrate portion. The bonding portion includes a bonding layer and a light absorption layer, absorptance of the light absorption layer for laser light being higher than or equal to absorptance of the bonding layer for the laser light. The bonding step bonds the semiconductor active portion and the support substrate portion by irradiating the light absorption layer with the laser light through the support substrate portion and melting the bonding layer by thermal conduction from the light absorption layer heated by the laser light.
摘要:
A chip package is provided, the chip package including: first encapsulation structure; first passivation layer formed over first encapsulation structure and first electrically conductive layer formed over first passivation layer; at least one chip arranged over first electrically conductive layer and passivation layer wherein at least one chip contact pad contacts first electrically conductive layer; at least one cavity formed in first encapsulation structure, wherein at least one cavity exposes a portion of first passivation layer covering at least one chip contact pad; second encapsulation structure disposed over first encapsulation structure and covering at least one cavity, wherein a chamber region over at least one chip contact pad is defined by at least one cavity and second encapsulation structure; wherein second encapsulation structure includes an inlet and outlet connected to chamber region, wherein inlet and outlet control an inflow and outflow of heat dissipating material to and from chamber region.
摘要:
Standoff structures that can be used on the die backside of semiconductor devices and methods for making the same are described. The devices contain a silicon substrate with an integrated circuit on the front side of the substrate and a backmetal layer on the backside of the substrate. Standoff structures made of Cu of Ni are formed on the backmetal layer and are embedded in a Sn-containing layer that covers the backmetal layer and the standoff structures. The standoff structures can be isolated from each other so that they are not connected and can also be configured to substantially mirror indentations in the leadframe that is attached to the Sn-containing layer. Other embodiments are described.