Abstract:
A packaged semiconductor device including a leadframe and a plurality of angularly shaped capacitors. The leadframe includes structures with surfaces and sidewalls. The angularly shaped capacitors are attached to surface portions of the leadframe structures. The angularly shaped capacitors have sidewalls coplanar with structure sidewalls. The angularly shaped capacitors includes a conductive material attached to the structure surface. The conductive material having pores covered by oxide and filled with conductive polymer. The angularly shaped capacitors topped by electrodes are made of a second metal.
Abstract:
A packaged semiconductor device including a leadframe made of a first metal, the leadframe including structures with surfaces and sidewalls; capacitors attached to surface portions of the leadframe structures, the capacitors having sidewalls coplanar with structure sidewalls; the capacitors including a foil of conductive material attached to the structure surface, the conductive material having pores covered by oxide and filled with conductive polymer, the capacitors topped by electrodes made of a second metal.
Abstract:
The present disclosure relates to a hermetic package capable of handling a high coefficient of thermal expansion (CTE) mismatch configuration. The disclosed hermetic package includes a metal base and multiple segments that are discrete from each other. Herein, a gap exists between every two adjacent ceramic wall segments and is sealed with a connecting material. The ceramic wall segments with the connecting material form a ring wall, where the gap between every two adjacent ceramic wall segments is located at a corner of the ring wall. The metal base is either surrounded by the ring wall or underneath the ring wall.
Abstract:
A semiconductor device having a leadframe including a pad (101) surrounded by elongated leads (110) spaced from the pad by a gap (113) and extending to a frame, the pad and the leads having a first thickness (115) and a first and an opposite and parallel second surface; the leads having a first portion (112) of first thickness near the gap and a second portion (111) of first thickness near the frame, and a zone (114) of reduced second thickness (116) between the first and second portions; the second surface (112a) of the first lead portions is coplanar with the second surface (111a) of the second portions. A semiconductor chip (220) with a terminal is attached the pad. A metallic wire connection (230) from the terminal to an adjacent lead includes a stitch bond (232) attached to the first surface of the lead.
Abstract:
The electronic device includes a carrier, a semiconductor substrate attached to the carrier, and a layer system disposed between the semiconductor substrate and the carrier. The layer system includes an electrical contact layer disposed on the semiconductor substrate. A functional layer is disposed on the electrical contact layer. An adhesion layer is disposed on the functional layer. A solder layer is disposed between the adhesion layer and the carrier.
Abstract:
Integrated circuit (IC) device substrates and structures for mating and aligning with sockets. An IC device may include a frame on and around a substrate, which may include glass or silicon. The frame may include an alignment feature, such as a notch or hole, to mate with a complementary keying feature of a socket. A heat spreader may be coupled to an IC die and extend beyond the substrate or be coupled to the frame. The heat spreader may include a heat pipe. The IC device may be part of an IC system with the device substrate coupled to a system substrate by a socket configured to mate to the frame.
Abstract:
An electronic device with a multi-layer contact and a system is disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate having a first electrode terminal located on a first surface and a second surface electrode terminal located on a second surface, the first surface being opposite to the second surface, an electrical contact layer disposed directly on the first electrode terminal, a functional layer directly disposed on the electrical contact layer, an adhesion layer directly disposed on the functional layer, a solder layer directly disposed on the adhesion layer; and a protection layer directly disposed on the solder layer, wherein the semiconductor device is a power semiconductor device configured to provide a vertical current flow.
Abstract:
An electronic device with a multi-layer contact and a system is disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate having a first electrode terminal located on a first surface and a second surface electrode terminal located on a second surface, the first surface being opposite to the second surface, an electrical contact layer disposed directly on the first electrode terminal, a functional layer directly disposed on the electrical contact layer, an adhesion layer directly disposed on the functional layer, a solder layer directly disposed on the adhesion layer; and a protection layer directly disposed on the solder layer, wherein the semiconductor device is a power semiconductor device configured to provide a vertical current flow.
Abstract:
Various embodiments provide for a chip package consisting of a layer over a carrier, further carrier material over the layer, wherein one or more portions of the further carrier material is removed, and a chip with one or more contact pads, where the chip is adhered to the carrier via the layer. A wafer level package consisting of a plurality of chips adhered to the carrier via a plurality of portions of the layer released from the further carrier material is also provided for.
Abstract:
A method for manufacturing a chip package is provided. The method includes forming a layer over a carrier; forming further carrier material over the layer; selectively removing one or more portions of the further carrier material thereby releasing one or more portions of the layer from the further carrier material; and adhering a chip including one or more contact pads to the carrier via the layer.