Abstract:
A semiconductor package includes a pad and leads, the pad and leads including a base metal predominantly including copper, a first plated metal layer predominantly including nickel in contact with the base metal, and a second plated metal layer predominantly including silver in contact with the first plated metal layer. The first plated metal layer has a first plated metal layer thickness of 0.1 to 5 microns, and the second plated metal layer has a second plated metal layer thickness of 0.2 to 5 microns. The semiconductor package further includes an adhesion promotion coating predominantly including silver oxide in contact with the second plated metal layer opposite the first plated metal layer, a semiconductor die mounted on the pad, a wire bond extending between the semiconductor die and a lead of the leads, and a mold compound covering the semiconductor die and the wire bond.
Abstract:
A system comprises a substrate. The substrate comprises a lead. The system also comprises a solder barrier formed on the lead. The solder barrier is to contain a solder bump within a solder area on the lead. The system further includes a solder bump in the solder area and a die having an active surface coupled to the solder bump.
Abstract:
A semiconductor package includes a pad and leads, the pad and leads including a base metal predominantly including copper, a first plated metal layer predominantly including nickel in contact with the base metal, and a second plated metal layer predominantly including silver in contact with the first plated metal layer. The first plated metal layer has a first plated metal layer thickness of 0.1 to 5 microns, and the second plated metal layer has a second plated metal layer thickness of 0.2 to 5 microns. The semiconductor package further includes an adhesion promotion coating predominantly including silver oxide in contact with the second plated metal layer opposite the first plated metal layer, a semiconductor die mounted on the pad, a wire bond extending between the semiconductor die and a lead of the leads, and a mold compound covering the semiconductor die and the wire bond.
Abstract:
A lead frame that is partially covered with an adhesion layer. A method for forming a lead frame with an adhesion layer starting with a lead frame and using a photo-imageable polyimide or epoxy material to form the adhesion layer. A method for forming a lead frame with an adhesion layer starting with a lead frame blank and using a photo-imageable polyimide or epoxy material to form the adhesion layer.
Abstract:
A lead frame that is partially covered with an adhesion layer. A method for forming a lead frame with an adhesion layer starting with a lead frame and using a photo-imageable polyimide or epoxy material to form the adhesion layer. A method for forming a lead frame with an adhesion layer starting with a lead frame blank and using a photo-imageable polyimide or epoxy material to form the adhesion layer.
Abstract:
A method for fabricating a packaged semiconductor device begins by placing a first mask on a foil of porous conductive material bonded on a strip of a first metal. The surface of the conductive material and the inside of the pores are oxidized. The first mask leaves areas unprotected. The pores of the unprotected areas are filled with a conductive polymeric compound. A layer of a second metal is deposited on the conductive polymeric compound in the unprotected areas. The first mask is removed to expose un-oxidized conductive material. The foil thickness of the un-oxidized conductive material is removed to expose the underlying first metal. This creates sidewalls of the foil and leaves un-removed the capacitor areas covered by the second metal. A second mask is placed on the strip, the second mask defines a plurality of leadframes having chip pads and leads, and protecting the capacitor areas. The portions of the first metal exposed by the second mask are removed. Sidewalls of the first metal are coplanar with the foil sidewalls. The second mask is removed.
Abstract:
Methods of fabricating integrated circuits are disclosed herein. In one embodiment of a method. A die having a side is provided. A conductive stud is connected to the side of the die, wherein the conductive stud has a first end that is connected to the die and an opposite second end. The die is encapsulated said die except for the side. A first dielectric layer is affixed to the side of the die. The first dielectric layer has a first side and a second side. The first side of the first dielectric layer is affixed to the side of the die. The conductive stud enters the first side of the first dielectric layer. A conductive layer is affixed to the second side of the first dielectric layer. The second side of the conductive stud is affixed to the conductive layer using a conductive adhesive.
Abstract:
In a described example, an apparatus includes: a package substrate having a planar die mount surface; recesses extending into the planar die mount surface; and a semiconductor device die flip chip mounted to the package substrate on the planar die mount surface, the semiconductor device die having post connects having proximate ends on bond pads on an active surface of the semiconductor device die, and extending to distal ends away from the semiconductor device die having solder bumps, wherein the solder bumps form solder joints to the package substrate within the recesses.
Abstract:
A semiconductor package includes a pad and leads, the pad and leads including a base metal predominantly including copper, a first plated metal layer predominantly including nickel in contact with the base metal, and a second plated metal layer predominantly including silver in contact with the first plated metal layer. The first plated metal layer has a first plated metal layer thickness of 0.1 to 5 microns, and the second plated metal layer has a second plated metal layer thickness of 0.2 to 5 microns. The semiconductor package further includes an adhesion promotion coating predominantly including silver oxide in contact with the second plated metal layer opposite the first plated metal layer, a semiconductor die mounted on the pad, a wire bond extending between the semiconductor die and a lead of the leads, and a mold compound covering the semiconductor die and the wire bond.
Abstract:
A packaged semiconductor device including a leadframe and a plurality of angularly shaped capacitors. The leadframe includes structures with surfaces and sidewalls. The angularly shaped capacitors are attached to surface portions of the leadframe structures. The angularly shaped capacitors have sidewalls coplanar with structure sidewalls. The angularly shaped capacitors includes a conductive material attached to the structure surface. The conductive material having pores covered by oxide and filled with conductive polymer. The angularly shaped capacitors topped by electrodes are made of a second metal.