摘要:
Disclosed is a method for preparing a benzyl amine compound, i.e., synthesizing a benzyl amine compound by means of an oxidation reaction between a methylbenzene/ethylbenzene compound and arylamine by using an ionic iron (III) complex containing 1,3-di-tert-butylimidazolium cation and having a molecular formula of [(RNCHCHNR)CH][FeBr4] (R being tert-butyl) and di-t-butyl peroxide as an oxidant. The present invention is not only applicable to a methylbenzene compound containing a benzylic primary carbon-hydrogen bond but also applicable to an ethylbenzene compound containing a benzylic secondary carbon-hydrogen bond, and therefore is widely applicable. This is the first case where the preparation of a benzyl amine compound by means of an oxidation reaction between a methylbenzene/ethylbenzene compound and arylamine is implemented by an iron catalyst.
摘要:
The present disclosure provides compositions and method targeting GPER for the treatment of cancers, such as breast cancers and leukemias, gallstone disease, and for conferring of neuroprotection on a subject. Also disclosed are high throughput assays for identifying antagonists of GPER.
摘要:
Glucose deprivation is an attractive strategy in cancer research and treatment. Cancer cells upregulate glucose uptake and metabolism for maintaining accelerated growth and proliferation rates. Specifically blocking these processes is likely to provide new insights to the role of glucose transport and metabolism in tumorigenesis, as well as in apoptosis. As solid tumors outgrow the surrounding vasculature, they encounter microenvironments with a limited supply of nutrients leading to a glucose deprived environment in some regions of the tumor. Cancer cells living in the glucose deprived environment undergo changes to prevent glucose deprivation-induced apoptosis. Knowing how cancer cells evade apoptosis induction is also likely to yield valuable information and knowledge of how to overcome the resistance to apoptosis induction in cancer cells. Disclosed herein are novel anticancer compounds that inhibit basal glucose transport, resulting in tumor suppression and new methods for the study of glucose deprivation in animal cancer research.
摘要:
Glucose deprivation is an attractive strategy in cancer research and treatment. Cancer cells upregulate glucose uptake and metabolism for maintaining accelerated growth and proliferation rates. Specifically blocking these processes is likely to provide new insights to the role of glucose transport and metabolism in tumorigenesis, as well as in apoptosis. As solid tumors outgrow the surrounding vasculature, they encounter microenvironments with a limited supply of nutrients leading to a glucose deprived environment in some regions of the tumor. Cancer cells living in the glucose deprived environment undergo changes to prevent glucose deprivation-induced apoptosis. Knowing how cancer cells evade apoptosis induction is also likely to yield valuable information and knowledge of how to overcome the resistance to apoptosis induction in cancer cells. Disclosed herein are novel anticancer compounds that inhibit basal glucose transport, resulting in tumor suppression and new methods for the study of glucose deprivation in animal cancer research.
摘要:
The invention relates to novel cyclic hydrocarbon compounds and derivatives thereof, processes for the preparation thereof, to said compounds for use as a medicament, to said compounds for use in therapy, to pharmaceutical compositions comprising said compounds, to methods of treating diseases with said compounds, and to the use of said compounds in the manufacture of medicaments.
摘要:
The present invention provides a novel transition metal complex where a monocy-clopentadienyl ligand to which an amido group is introduced is coordinated, a method for synthesizing the complex, and olefin polymerization using the same. The method for preparing a transition metal complex according to the present invention comprises a step of blocking a by-reaction of a nitrogen atom using a compound containing a protecting group, and thus it is possible to prepare a transition metal complex in a simpler manner in a high yield. Further, the transition metal complex according to the present invention has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, sterically monomers can easily approach the transition metal complex.
摘要:
This invention relates to the miniaturisation of radiosyntheses onto microfabricated devices, and in particular to use of microfabricated devices for radiosynthesis, isolation, and analysis of radiotracers for use in Positron Emission Tomography (PET).
摘要:
The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-oxygen bond between the oxygen atom of an alcohol and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. The present invention also relates to copper-catalyzed methods of forming a carbon-carbon bond between a reactant comprising a nucleophilic carbon atom, e.g., an enolate or malonate anion, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. Importantly, all the methods of the present invention are relatively inexpensive to practice due to the low cost of the copper comprised by the catalysts.