Abstract:
Methods of operating apparatus, and apparatus configured to perform similar methods, include obtaining information indicative of a data value stored in a particular memory cell of an array of volatile memory cells of the apparatus, determining if a power loss to the apparatus is indicated, and, if a power loss to the apparatus is indicated, selectively programming one memory cell of a pair of gate-connected non-volatile memory cells of the apparatus responsive to the information indicative of the data value stored in the particular memory cell. A resulting combination of threshold voltages of the one memory cell of the pair of gate-connected non-volatile memory cells and of the other memory cell of the pair of gate-connected non-volatile memory cells is representative of the information indicative of the data value stored in the particular memory cell.
Abstract:
A nonvolatile memory device includes a memory block including a plurality of cell strings each of which includes memory cells electrically coupled with word lines stacked over a substrate; a plurality of sub common sources electrically coupled to one ends of the cell strings; and a plurality of bit lines electrically coupled to the other ends of the cell strings, wherein the memory block includes sub blocks respectively corresponding to the sub common sources, and cell strings electrically coupled to the same bit line among the cell strings are included in the same sub block.
Abstract:
Efficient data path architecture for flash devices requiring multi-pass programming utilizes an external memory as an intermediate buffer to store the encoded data used for a first pass programming of the flash device. The stored encoded data can be read from the external memory for subsequent passes programming instead of fetching the data from an on-chip memory, which stores the data received from a host system. Thus, the on-chip memory can be made available to speed up the next data transfer from the host system.
Abstract:
A semiconductor structure includes first and second source/drain region disposed in a semiconductor body and spaced from each other by a channel region. A gate electrode overlies the channel region and a capacitor electrode is disposed between the gate electrode and the channel region. A first gate dielectric is disposed between the gate electrode and the capacitor electrode and a second gate dielectric disposed between the capacitor electrode and the channel region. A first electrically conductive contact region is in electrical contact with the gate electrode and a second electrically conductive contact region in electrical contact with the capacitor electrode. The first and second contact regions are electrically isolated from one another.
Abstract:
A multi-time programmable memory cell has a differential multi-time programmable memory cell and a second-level latch cell. The differential multi-time programmable memory cell provides a first balance signal and a second balance signal, and the second-level latch cell receives the first balance signal and the second balance signal and provides an output signal according to the first balance signal and the second balance signal based on a first latch control signal and a second latch control signal.
Abstract:
A multi-chip package (MCP) includes semiconductor chips integrated therein. Each semiconductor chip includes: pad groups which extend in a first direction and are arranged in a second direction, and each of which includes a first metal line and a second metal line that are stacked in a third direction with an interlayer dielectric layer interposed therebetween; receivers which one-to-one correspond to the respective pad groups, and each of which includes a first input terminal coupled with the first metal line of a corresponding pad group, and an output terminal coupled with the second metal line of the corresponding pad group; and selectors, each of which selects one of a feedback signal transferred from the output terminal of a corresponding receiver and a reference voltage, and provides the selected one to a second input terminal of the corresponding receiver, in response to a chip select signal.
Abstract:
A memory including an array of nvSRAM cells and method of operating the same are provided. Each nvSRAM cell includes a volatile charge storage circuit, and a non-volatile charge storage circuit including exactly one non-volatile memory (NVM) element, a first transistor coupled to the NVM element through which data true is coupled to the volatile charge storage circuit, a second transistor coupled to the NVM element through which a complement of the data is coupled to the volatile charge storage circuit and a third transistor through which the NVM element is coupled to a positive voltage supply line (VCCT). In one embodiment, the first transistor is coupled to a first node of the NVM element, the second transistor is coupled to a second node of the NVM element and the third transistor is coupled between the first node and VCCT. Other embodiments are also disclosed.
Abstract:
A method is provided for using a multi-level cell memory device. The method includes writing first data to a first portion of a memory array using a first number of state levels for memory cells of the first portion of the memory array. The method further includes re-writing second data to a second portion of the memory array using a second number of state levels for memory cells of the second portion of the memory array. The second number is different from the first number.
Abstract:
Apparatuses and methods of pulse shaping a pulse signal for programming and erasing a Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) memory cell are described. In one method a pulse shape of a pulse signal is controlled to include four or more phases for programming or erasing a SONOS memory cell. A write cycle is performed to program or erase the SONOS memory with the pulse signal with the four or more phases.
Abstract:
To provide a novel nonvolatile latch circuit and a semiconductor device using the nonvolatile latch circuit, a nonvolatile latch circuit includes a latch portion having a loop structure where an output of a first element is electrically connected to an input of a second element, and an output of the second element is electrically connected to an input of the first element; and a data holding portion for holding data of the latch portion. In the data holding portion, a transistor using an oxide semiconductor as a semiconductor material for forming a channel formation region is used as a switching element. In addition, an inverter electrically connected to a source electrode or a drain electrode of the transistor is included. With the transistor, data held in the latch portion can be written into a gate capacitor of the inverter or a capacitor which is separately provided.