摘要:
A semiconductor package includes a redistribution substrate having first and second surfaces, a first semiconductor chip on the first surface, external terminals on the second surface, a second semiconductor chip above the first semiconductor chip, external connection members below the second semiconductor chip, conductive pillars electrically connecting the external connection members to the redistribution substrate. The second semiconductor chip includes a device layer, a wiring layer, and a redistribution layer on a semiconductor substrate. The wiring layer includes intermetallic dielectric layers, wiring lines, and a conductive pad connected to an uppermost wiring line. The redistribution layer includes a first redistribution dielectric layer, a first redistribution pattern, and a second redistribution dielectric layer. A vertical distance between the semiconductor substrate and the conductive pillars is less than that between the first semiconductor chip and the external terminals.
摘要:
Technology is disclosed herein for a memory device with multiple dies bonded together. The memory device may be referred to herein as an integrated memory assembly. The integrated memory assembly has a control semiconductor die and two or more memory semiconductor dies. In one embodiment, each memory semiconductor die has a memory structure having blocks of memory cells. Bit lines extend over the respective memory structure. In one embodiment the integrated memory assembly has what is referred to herein as a “separate bit line architecture”. The separate bit line architecture allows the control semiconductor die to control a memory operation in parallel in the two memory semiconductor dies. Moreover, the separate bit line architecture allows for good scaling of a memory device with multiple dies bonded together.
摘要:
A stackable via package includes a substrate having an upper surface and a trace on the upper surface, the trace including a terminal. A solder ball is on the terminal. The solder ball has a solder ball diameter A and a solder ball height D. A via aperture is formed in a package body enclosing the solder ball to expose the solder ball. The via aperture includes a via bottom having a via bottom diameter B and a via bottom height C from the upper surface of the substrate, where A
摘要:
In a semiconductor device (SP1) according to an embodiment, a solder resist film (first insulating layer, SR1) which is in contact with the base material layer, and a resin body (second insulating layer, 4) which is in contact with the solder resist film and the semiconductor chip, are laminated in between the base material layer (2CR) of a wiring substrate 2 and a semiconductor chip (3). In addition, a linear expansion coefficient of the solder resist film is equal to or larger than a linear expansion coefficient of the base material layer, and the linear expansion coefficient of the solder resist film is equal to or smaller than a linear expansion coefficient of the resin body. Also, the linear expansion coefficient of the base material layer is smaller than the linear expansion coefficient of the resin body. According to the above-described configuration, damage of the semiconductor device caused by a temperature cyclic load can be suppressed, and thereby reliability can be improved.
摘要:
The present disclosure relates to bump structures and a semiconductor device and semiconductor device package having the same. The semiconductor device includes a body, at least one conductive metal pad and at least one metal pillar. The body includes a first surface. The at least one conductive metal pad is disposed on the first surface. Each metal pillar is formed on a corresponding conductive metal pad. Each metal pillar has a concave side wall and a convex side wall opposite the first concave side wall, and the concave side wall and the convex side wall are orthogonal to the corresponding conductive metal pad.
摘要:
A structure and method for performing metal-to-metal bonding in an electrical device. For example and without limitation, various aspects of this disclosure provide a structure and method that utilize an interlocking structure configured to enhance metal-to-metal bonding.
摘要:
An integrated circuit device that includes a package substrate and a die coupled to the package substrate. The package substrate includes at least one dielectric layer, a first stack of first interconnects in the at least one dielectric layer, and a second interconnect formed on at least one side portion of the at least one dielectric layer. The first stack of first interconnects is configured to provide a first electrical path for a non-ground reference signal, where the first stack of first interconnects is located along at least one side of the package substrate. The second interconnect is configured to provide a second electrical path for a ground reference signal.
摘要:
An embodiment method includes providing a standardized testing structure design for a chip-on-wafer (CoW) structure, wherein the standardized testing structure design comprises placing a testing structure in a pre-selected area a top die in the CoW structure, and electrically testing a plurality of microbumps in the CoW structure by applying a universal testing probe card to the testing structure.
摘要:
Example methods, apparatus, and products for creating an environmentally protective coating for integrated circuit assemblies are described herein. A preform plastic sheet is places over components of an integrated circuit such that during a reflow process, the preform plastic sheet melts to form a conformal coating over components of the integrated circuit assembly.
摘要:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.