摘要:
The invention relates to a wire, preferably a bonding wire for bonding in microelectronics, containing a copper core with a surface and a coating layer containing aluminum superimposed over the surface of the core. In any cross-sectional view of the wire, the area share of the coating layer is from 20 to 50% based on the total area of the cross-section of the wire, and the aspect ratio between longest and shortest paths through the wire is from larger than 0.8 to 1.0. The wire has a diameter of from 100 μm to 600 μm. The invention further relates to a process for making a wire, to a wire obtained by the process, to an electric device containing at least two elements and the wire, to a propelled device containing the electric device, and to a process of connecting two elements through the wire by wedge bonding.
摘要:
A bonding structure of a ball-bonded portion is obtained by bonding a ball portion formed on a front end of a multilayer copper bonding wire. The multilayer copper bonding wire includes a core member that is mainly composed of copper, and an outer layer that is formed on the core member and is mainly composed of at least one noble metal selected from a group of Pd, Au, Ag and Pt. Further, a first concentrated portion of such noble metal(s) is formed in a ball-root region located at a boundary with the copper bonding wire in a surface region of the ball-bonded portion.
摘要:
An object of the invention is to provide a method for producing a conductive member having low electrical resistance, and the conductive member is obtained using a low-cost stable conductive material composition that does not contain an adhesive. A method for producing a semiconductor device in which silver or silver oxide provided on a surface of a base and silver or silver oxide provided on a surface of a semiconductor element are bonded, includes the steps of arranging a semiconductor element on a base such that silver or silver oxide provided on a surface of the semiconductor element is in contact with silver or silver oxide provided on a surface of the base, temporarily bonding the semiconductor element and the base by applying a pressure or an ultrasonic vibration to the semiconductor element or the base, and permanently bonding the semiconductor element and the base by applying heat having a temperature of 150 to 900° C. to the semiconductor device and the base.
摘要:
An object of the invention is to provide a method for producing a conductive member having low electrical resistance, and the conductive member is obtained using a low-cost stable conductive material composition that does not contain an adhesive. A method for producing a semiconductor device in which silver or silver oxide provided on a surface of a base and silver or silver oxide provided on a surface of a semiconductor element are bonded, includes the steps of arranging a semiconductor element on a base such that silver or silver oxide provided on a surface of the semiconductor element is in contact with silver or silver oxide provided on a surface of the base, temporarily bonding the semiconductor element and the base by applying a pressure or an ultrasonic vibration to the semiconductor element or the base, and permanently bonding the semiconductor element and the base by applying heat having a temperature of 150 to 900° C. to the semiconductor device and the base.
摘要:
The invention is aimed at providing a bonding structure of a copper-based bonding wire, realizing low material cost, high productivity in a continuous bonding in reverse bonding for wedge bonding on bumps, as well as excellent reliability in high-temperature heating, thermal cycle test, reflow test, HAST test or the like. The bonding structure is for connecting the bonding wire onto a ball bump formed on an electrode of a semiconductor device, the bonding wire and the ball bump respectively containing copper as a major component thereof. The bonding structure comprises a concentrated layer A provided at an interface of a bonding part of the ball bump and the bonding wire, wherein the concentration of a metal R other than copper in the concentrated layer A is not less than ten times the average concentration of the metal R in the ball bump; and a concentrated layer B provided at an interface of a bonding part of the ball bump and the electrode, wherein the concentration of the metal R in the concentrated layer B is not less than ten times the average concentration of the metal R in the ball bump.
摘要:
The present invention provides a semiconductor-device copper-alloy bonding wire which has an inexpensive material cost, ensures a superior ball joining shape, wire joining characteristic, and the like, and a good loop formation characteristic, and a superior mass productivity. The semiconductor-device copper-alloy bonding wire contains at least one of Mg and P in total of 10 to 700 mass ppm, and oxygen within a range from 6 to 30 mass ppm.
摘要:
Provided is ultrahigh purity copper having a hardness of 40 Hv or less, and a purity of 8N or higher (provided that this excludes the gas components of O, C, N, H, S and P). With this ultrahigh purity copper, the respective elements of O, S and P as gas components are 1 wtppm or less. Also provided is a manufacturing method of ultrahigh purity copper based on two-step electrolysis using an electrolytic solution comprised of copper nitrate solution, including the procedures of adding hydrochloric acid in an electrolytic solution comprised of copper nitrate solution; circulating the electrolytic solution; and performing two-step electrolysis while eliminating impurities with a filter upon temporarily setting the circulating electrolytic solution to a temperature of 10° C. or less. The present invention provides a copper material that is compatible with the thinning (wire drawing) of the above, and is capable of efficiently manufacturing ultrahigh purity copper having a purity of 8N (99.999999 wt %) or higher, providing the obtained ultrahigh purity copper, and providing a bonding wire for use in a semiconductor element that can be thinned.
摘要:
A bonding wire having a core mainly consisting of copper and a coating layer formed on the core, wherein the coating layer is made of an oxidation-resistant metal having a melting point higher than that of copper, and the elongation of this bonding wire per unit sectional area is 0.021%/nullm2 or more; and a bonding wire having a core mainly consisting of copper and a coating layer formed on the core, wherein the coating layer is made of a metal having oxidation resistance higher than that of copper, and the relationship of 0.007nullXnull0.05 is satisfied wherein an area ratio X is (the area of the coating layer/the area of the core at the section of wire being cut vertically) are provided. The bonding wires thus provided are inexpensive and excellent in ball formation characteristic and bonding characteristic. Further, a ball bonding method characterized in using the above bonding wire is also provided.
摘要翻译:一种具有主要由铜构成的芯和在芯上形成的涂层的接合线,其中,涂层由熔点高于铜的抗氧化金属制成,并且每单位的该接合线的伸长率 截面积为0.021%/ m 2以上; 以及具有主要由铜构成的芯和在芯上形成的涂层的接合线,其中,所述涂层由耐氧化性高于铜的金属制成,并且0.007≤X<= 0.05的关系为 满足其中面积比X是(涂层的面积/芯线的垂直截面处的芯部的面积)。 由此提供的接合线便宜并且球形成特性和接合特性优异。 此外,还提供了使用上述接合线的球接合方法。
摘要:
Composite wires in which a noble metal annulus is welded to an electrically-conductive, non-noble metal wire core. Methods of forming the composite wire and semiconductor packaging having at least one lead bonded to the composite wire are also disclosed.
摘要:
A method of fabricating a semiconductor device includes forming a first contact pad and a second contact pad over a first passivation layer, depositing a first buffer layer over the first contact pad and the second contact pad, and depositing a second buffer layer over the first buffer layer and the second contact pad. The first contact pad is in a circuit region and the second contact pad is in a non-circuit region. An edge of the second contact pad is exposed and a periphery of the first contact pad and an edge of the second contact pad are covered by the first buffer layer.