摘要:
Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
摘要:
Apparatus and methods that enable the suppression of amplified spontaneous emission (ASE) and prevention against parasitic lasing in cryogenically-cooled laser amplifier systems, thus allowing sustainable extraction efficiency when increasing the pump power and suitable for large-scale, high average-power laser systems employing large-aperture gain media. A gain medium having a known index of refraction for operation in an evacuated, cryogenic environment includes an ASE-absorbing epoxy composition on the perimetrical edge of the gain medium, wherein the epoxy composition has an index of refraction that substantially matches the index of refraction of the gain medium.
摘要:
An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
摘要:
An optical module 1 according to an embodiment includes a plurality of laser diodes (LDs) 21 to 23, a multiplexing optical system 30 combining a plurality of laser beams from the respective plurality of LDs, and a package 10 accommodating the plurality of LDs and the multiplexing optical system. The package includes a support mounted with the plurality of LDs and the multiplexing optical system, and a cap having a transmissive window that allows a resultant light beam to pass through. At least one of the LDs has an oscillation wavelength of nor more than 550 nm. The package has an internal moisture content of not more than 3000 ppm. The multiplexing optical system is fixed to the support by a resin curing adhesive.
摘要:
A light source device has a laser light emitting element including a cylinder portion, a flange portion and lead wire terminals, a collimator lens, a collimator lens holder including a collimator lens mounting depressed portion and a hole portion communicating with the depressed portion and accommodating the cylinder portion, and a light source element holder holding the laser light emitting element and including a lead wire outlet hole portion accommodating the lead wire terminals and penetrating from a front surface to a rear surface, and a front surface of the flange portion is fastened by the perimeter of a rear end of the hole portion to press the laser light emitting element against the front surface of the light source element holder to thereby fix the laser light emitting element to the light source element holder, an adhesion fixing member being filled in the lead wire outlet hole portion.
摘要:
In a semiconductor laser device including a semiconductor laser element that emits laser light from an emission region thereof, a cap having a peripheral wall and a ceiling wall that cover the semiconductor laser element and having a window portion formed in the ceiling wall to face the emission region, and a transparent optical member that fills the window portion, the optical member is formed by curing a liquid resin and holds the ceiling wall, and a light incidence surface of the optical member faces the emission region and is formed by natural flow of the liquid resin.
摘要:
A first contact surface of a semiconductor laser chip can be formed to a first target surface roughness and a second contact surface of a carrier mounting can be formed to a second target surface roughness. A first bond preparation layer comprising a first metal can optionally be applied to the formed first contact surface, and a second bond preparation layer comprising a second metal can optionally be applied to the formed second contact surface. The first contact surface can be contacted with the second contact surface, and a solderless securing process can secure the semiconductor laser chip to the carrier mounting. Related systems, methods, articles of manufacture, and the like are also described.
摘要:
An embedded metal heat sink for a semiconductor device is described. The embedded metal heat sink for a semiconductor device comprises a metal thin layer, a metal heat sink and two bonding pads. The metal thin layer including a first surface and a second surface on opposite sides, wherein at least one semiconductor device is embedded in the first surface of the metal thin layer, and the semiconductor device has two electrodes with different conductivity types. The metal heat sink is deposited on the second surface of the metal thin layer. The bonding pads are deposed on the first surface of the metal thin layer around the semiconductor device and are respectively corresponding to the electrodes, wherein the electrodes are electrically and respectively connected to the corresponding bonding pads by at least two wires, and the bonding pads are electrically connected to an outer circuit.
摘要:
A hybrid type integrated optical device has a semiconductor laser mounted on a planar waveguide platform by flip-chip bonding. The optical device comprises a semiconductor laser and a planar waveguide platform. The semiconductor laser includes a first structure, which has an active region and a light emission surface formed on at least one side surface of the first structure, and a second structure, which is formed below the first structure and has upper surfaces exposed at the light emission surface of the first structure and/or to a surface opposite to the light emitting surface. The planar waveguide platform includes a substrate, a lower clad layer, a core layer, and an upper clad layer, being sequentially stacked on the substrate. The semiconductor laser is flip-chip bonded on the substrate, such that the exposed upper surfaces of the second structure contact the upper surface of the upper clad layer.
摘要:
A step portion is disposed at the periphery of a position where the adhesive is applied so that a front end of a needle for ejecting the adhesive comes in contact with the step portion. A passage is formed in the step portion so as to introduce the adhesive ejected from the front end of the needle to the position.