PROCESS KIT AND METHOD FOR PROCESSING A SUBSTRATE

    公开(公告)号:US20180151337A1

    公开(公告)日:2018-05-31

    申请号:US15818169

    申请日:2017-11-20

    IPC分类号: H01J37/34 H01L21/02

    摘要: Embodiments of process kits for process chambers and methods for processing a substrate are provided herein. In some embodiments, a process kit includes a non-conductive upper shield having an upper portion to surround a sputtering target and a lower portion extending downward from the upper portion; and a conductive lower shield disposed radially outward of the non-conductive upper shield and having a cylindrical body with an upper portion and a lower portion, a lower wall projecting radially inward from the lower portion, and a lip protruding upward from the lower wall. The cylindrical body is spaced apart from the non-conductive upper shield by a first gap. The lower wall is spaced apart from the lower portion of the non-conductive upper shield by a second gap to limit a direct line of sight between a volume within the non-conductive upper shield and the cylindrical body of the conductive lower shield.

    Sputtering apparatus
    3.
    发明授权

    公开(公告)号:US09966241B2

    公开(公告)日:2018-05-08

    申请号:US14878567

    申请日:2015-10-08

    摘要: A sputtering apparatus includes a shutter arranged having a first surface on a side of a substrate holder and a second surface on the opposite side, a first shield having a third surface including a portion facing the second surface and a fourth surface on the opposite side, a second shield having a fifth surface including a portion facing end portions of the shutter and the first shield, and a gas supply unit supplying a gas into a space arranged outside the first shield to communicate with a first gap between the second surface of the shutter and the third surface of the first shield. The second shield includes a protruding portion on the fifth surface to form a second gap between the protruding portion and the end portion of the shutter.

    Magnetron sputtering apparatus
    5.
    发明授权

    公开(公告)号:US09812302B2

    公开(公告)日:2017-11-07

    申请号:US12531515

    申请日:2008-03-14

    IPC分类号: H01J37/32 H01J37/34 C23C14/35

    摘要: In a magnetron sputtering apparatus configured such that a magnetic field pattern on a target surface moves with time by means of a rotary magnet group, it is to solve a problem that the failure rate of substrates to be processed becomes high upon plasma ignition or extinction, thereby providing a magnetron sputtering apparatus in which the failure rate of the substrates is smaller than conventional. In a magnetron sputtering apparatus, a plasma shielding member having a slit is disposed on an opposite side of a target with respect to a rotary magnet group. The distance between the plasma shielding member and the substrate is set shorter than the electron mean free path or the sheath width. Further, the width and the length of the slit are controlled to prevent impingement of plasma on the processing substrate. This makes it possible to reduce the failure rate of the substrates.

    REACTION CHAMBER AND SEMI-CONDUCTOR PROCESSING DEVICE

    公开(公告)号:US20170154758A1

    公开(公告)日:2017-06-01

    申请号:US15310047

    申请日:2014-11-27

    摘要: A reaction chamber and a semiconductor processing device, comprise a Faraday shielding ring (21) made of a magnetic insulation material and an insulating ring (22) made of an insulating material; the Faraday shielding ring (21) is provided with a slot thereon passing through a ring surface thereof in an axial direction; both the Faraday shielding ring (21) and the insulating ring (22) are disposed in the reaction chamber surrounding an inner peripheral wall of the reaction chamber, and the Faraday shielding ring (21) is stacked on the insulating ring (22) in a vertical direction. A shielding ring (211) is disposed surrounding an inner peripheral wall of the insulating ring (22), the shielding ring (211) is connected to an area of a lower surface of the Faraday shielding ring (21) adjacent to a center of the reaction chamber, and the shielding ring (211) is made of a magnetic insulation material and provided with a slot thereon passing through a ring surface thereof in an axis direction. The reaction chamber and the semiconductor processing device can not only avoid or reduce the risk of sparking, but also reduce the pollution of the reaction chamber caused by the flaking off of metal particles; and in addition, it is possible to increase an inner diameter and an available space of the reaction chamber.