摘要:
The present invention provides an in-line type multi-chamber substrate processing apparatus which, with a simple configuration, can decrease influence of particles due to film peeling and enables installation of a number of processing chambers. In one embodiment of the present invention, a jointless arm of a transfer robot that has a substrate holding part 4a and performs rotational movement while maintaining a predetermined length of the arm is disposed inside a first process chamber capable of being evacuated. The first process chamber is configured to be able to transfer substrates from an adjacent second process chamber through an opening by the arm of the transfer robot. A holder as an arm retreating position and a substrate mounting position is positioned so as to overlap with a trajectory of the substrate holding part when the arm of the transfer robot rotates about a rotation axis.
摘要:
A stacked load lock chamber comprises a first load lock chamber, a second load lock chamber stacked on the first load lock chamber, a first slit-valve mover configured to open and close a first opening provided to an atmosphere side of the first load lock chamber, a second slit-valve mover configured to open and close a second opening provided to an atmosphere side of the second load lock chamber, a first arm connected to the first slit-valve mover, a second arm connected to the second slit-valve mover, and a driver located below the first and second load lock chambers and configured to drive the first and second arms to move the first and second slit-valve movers through the first and second arms.
摘要:
The present invention provides an in-line type multi-chamber substrate processing apparatus which, with a simple configuration, can decrease influence of particles due to film peeling and enables installation of a number of processing chambers. In one embodiment of the present invention, a jointless arm of a transfer robot that has a substrate holding part 4a and performs rotational movement while maintaining a predetermined length of the arm is disposed inside a first process chamber capable of being evacuated. The first process chamber is configured to be able to transfer substrates from an adjacent second process chamber through an opening by the arm of the transfer robot. A holder as an arm retreating position and a substrate mounting position is positioned so as to overlap with a trajectory of the substrate holding part when the arm of the transfer robot rotates about a rotation axis.
摘要:
The inventors of this invention conducted a test and found out that to prevent peel-off of an adherent film, it is not of essential importance to set the radius of curvature equal to or larger than a predetermined threshold. The inventors of the present invention also found out that peel-off of an adherent film occurs in the region in which the curvature of a shield changes and is less likely to occur when the change in curvature of the shield is small. Accordingly, the key to the problem is the magnitude of a change in curvature of the shield, so changing the curvature stepwise makes it possible to suppress a large change in curvature, and thus to prevent peel-off of an adherent film free from any disadvantages such as deterioration in film thickness distribution, which may occur due to an increase in size of the shield.
摘要:
The inventors of this invention conducted a test and found out that to prevent peel-off of an adherent film, it is not of essential importance to set the radius of curvature equal to or larger than a predetermined threshold. The inventors of the present invention also found out that peel-off of an adherent film occurs in the region in which the curvature of a shield changes and is less likely to occur when the change in curvature of the shield is small. Accordingly, the key to the problem is the magnitude of a change in curvature of the shield, so changing the curvature stepwise makes it possible to suppress a large change in curvature, and thus to prevent peel-off of an adherent film free from any disadvantages such as deterioration in film thickness distribution, which may occur due to an increase in size of the shield.