Abstract:
A method for forming an ohmic contact on a layer of semiconductor material including germanium and tin. The method includes depositing a nickel-germanium layer onto the semiconductor material layer by a physical vapour deposition technique.
Abstract:
A coating on a processing chamber component includes a metallic bond layer deposited on a surface of the component. A thermal barrier layer is deposited on the bond layer. A substantially non-porous ceramic sealing layer is deposited on the thermal barrier layer. The sealing layer substantially conforms to irregularities of the surface of the thermal barrier layer. A chemistry of the sealing layer is selected for resistance to attack from halogen-containing chemicals.
Abstract:
A method of making a thin film can include bombarding a substrate with first ions supplied from a first ion beam; and sputtering from a metal sputtering target substantially simultaneously with the bombardment to deposit a metal-ion film onto the substrate, wherein the method is performed without applied heat, and the metal sputtering target comprises one or more of a metal, a transition metal, a semi-metal, alloys thereof and combinations thereof.
Abstract:
A method of manufacturing a reflective mask blank comprising a multilayer reflective film formed on a substrate so as to reflect EUV light; and a laminated film formed on the multilayer reflective film. The method includes the steps of depositing the multilayer reflective film on the substrate to form a multilayer reflective film formed substrate; carrying out defect inspection for the multilayer reflective film formed substrate; depositing the laminated film on the multilayer reflective film of the multilayer reflective film formed substrate; forming a fiducial mark for an upper portion of the laminated film to thereby form a reflective mask blank comprising the fiducial mark, the fiducial mark serving as a reference for a defect position in defect information; and carrying out defect inspection of the reflective mask blank by using the fiducial mark as a reference.
Abstract:
Methods of passivating at least one facet of a multilayer waveguide structure can include: cleaning, in a first chamber of a multi-chamber ultra-high vacuum (UHV) system, a first facet of the multilayer waveguide structure; transferring the cleaned multilayer waveguide structure from the first chamber to a second chamber of the multi-chamber UHV system; forming, in the second chamber, a first single crystalline passivation layer on the first facet; transferring the multilayer waveguide structure from the second chamber to a third chamber of the multi-chamber UHV system; and forming, in the third chamber, a first dielectric coating on the first single crystalline passivation layer, in which the methods are performed in an UHV environment of the multi-chamber UHV system without removing the multilayer waveguide structure from the UHV environment.
Abstract:
An article comprises a body and a conformal protective layer on at least one surface of the body. The conformal protective layer is a plasma resistant rare earth oxide film having a thickness of less than 1000 μm, wherein the plasma resistant rare earth oxide film is selected from a group consisting of an Er—Y composition, an Er—Al—Y composition, an Er—Y—Zr composition, and an Er—Al composition.
Abstract:
An orthopaedic implant can replace a joint in a patient. The orthopaedic implant includes a first component having a first component surface and a second component having a second component surface. The first component surface and the second component surface mate at an interface. The first component surface includes a metal substrate, a nanotextured surface, a ceramic coating, and a transition zone. The nanotextured surface is disposed directly upon the metal substrate and has surface features in a size of 10−9 meters. The ceramic coating conforms to the nanotextured surface and includes a plurality of bio-active sites configured to attract and retain calcium and phosphorous cations. The transition zone is disposed between the metal substrate and the ceramic coating. The transition zone includes a concentration gradient transitioning from the metal substrate to the ceramic coating and there is no distinct interface between the metal substrate and the ceramic coating.
Abstract:
An apparatus may comprise a plasma deposition unit, a movement system, and a mesh system. The plasma deposition unit may be configured to generate a plasma. The movement system may be configured to move a substrate under the plasma deposition unit. The mesh system may be located between the plasma deposition unit and the substrate in which a mesh may comprise a number of materials for deposition onto the substrate and in which the plasma passing through the mesh may cause a portion of the number of materials from the mesh to be deposited onto the substrate.
Abstract:
Mechanical devices such as prosthetic knees, hips, shoulders, fingers, elbows, wrists, ankles, fingers and spinal elements when implanted in the body and used as articulating elements are subjected to wear and corrosion. These prosthetic implants are usually fabricated in modular form from combinations of metallic materials such as stainless steels, Co—Cr—Mo alloys, and Ti—Al—V alloys; plastics such as ultra high molecular weight polyethylene (UHMWPE); and ceramics such as alumina and zirconia. As the articulating surfaces of these materials wear and corrode, products including plastic wear debris, metallic wear particles, and metallic ions will be released into the body, transported to and absorbed by bone, blood, the lymphatic tissue, and other organ systems. The polyethylene wear particles have been shown to produce long term bone loss and loosening of the implant. And, even very low concentrations of metallic wear particles and metallic ions are suspect in causing adverse toxic, inflammatory, and immunologic tissue reactions. This invention provides prosthetic implants having articulating surfaces that exhibit a reduced rate of release of wear debris and metal ions into the body and a method of producing such prosthetic implants.
Abstract:
An article comprises a body and a conformal protective layer on at least one surface of the body. The conformal protective layer is a plasma resistant rare earth oxide film having a thickness of less than 1000 μm, wherein the plasma resistant rare earth oxide is selected from a group consisting of YF3, Er4Al2O9, ErAlO3, and a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.
Abstract translation:一种制品在身体的至少一个表面上包括主体和保形层。 共形保护层是厚度小于1000μm的耐等离子体稀土氧化物膜,其中耐等离子体稀土氧化物选自YF 3,Er 4 Al 2 O 9,ErAlO 3和包含Y 4 Al 2 O 9的陶瓷化合物和固体 Y2O3-ZrO2溶液。