摘要:
Examples may include techniques to implement a SET write operation to a selected memory cell include in a memory array. Examples include selecting the memory cell that includes phase change material and applying various currents over various periods of time during a nucleation stage and a crystal growth stage to cause the memory cell to be in a SET logical state.
摘要:
To improve a reading speed and a writing speed while preventing occurrence of disturbance in a resistance storage element, specifically, a nonvolatile storage device that has a memory having at least one nonvolatile resistance storage element and a control unit configured to write a high resistance state or a low resistance state to the resistance storage element, wherein the control unit applies a bias to the resistance storage element in a verification operation carried out after writing the high resistance state, or applies a bias to the resistance storage element in a verification operation carried out after writing the low resistance state, these biases being in directions opposite to each other.
摘要:
Two-terminal memory can be set to a first state (e.g., conductive state) in response to a program pulse, or set a second state (e.g., resistive state) in response to an erase pulse. These pulses generally provide a voltage difference between the two terminals of the memory cell. Certain electrical characteristics associated with the pulses can be manipulated in order to enhance the efficacy of the pulse. For example, the pulse can be enhanced or improved to reduce power-consumption associated with the pulse, reduce a number of pulses used to successfully set the state of the memory cell, reduce wear or damage to the memory cell, or to improve Ion or Ioff distribution associated with changing the state of the memory cell.
摘要:
Systems, methods, and apparatus are provided for tuning a memristive property of a device. The device (500) includes a layer of a dielectric material (507) disposed over and forming an interface with a layer of an electrically conductive material (506), and a gate electrode (508) disposed over the dielectric material. The dielectric material layer includes at least one ionic species (302) having a high ion mobility. The electrically conductive material is configured such that a potential difference applied to the device can cause the at least one ionic species to migrate reversibly across the interface into or out of the electrically conductive material layer, to modify the resistive state of the electrically conductive material layer.
摘要:
Some embodiments include apparatus and methods having a memory cell with a first electrode, a second electrode, and a dielectric located between the first and second electrodes. The dielectric may be configured to allow the memory cell to form a conductive path in the dielectric from a portion of a material of the first electrode to represent a first value of information stored in the memory cell. The dielectric may also be configured to allow the memory cell to break the conductive path to represent a second value of information stored in the memory cell.
摘要:
A non-volatile data storage device comprises pairs of immediately adjacent and isolated-from-one-another local bit lines that are independently driven by respective and vertically oriented bit line selector devices. The isolation between the immediately adjacent and isolated-from-one-another local bit lines also isolates from one another respective memory cells of the non-volatile data storage device such that leakage currents cannot flow from memory cells connected to a first of the immediately adjacent and isolated-from-one-another local bit lines to memory cells connected to the second of the pair of immediately adjacent and isolated-from-one-another local bit lines. A method programming a desire one of the memory cells includes applying boosting voltages to word lines adjacent to the bit line of the desired memory cell while not applying boosting voltages to word lines adjacent to the other bit line of the pair.
摘要:
Methods and structures for programmable device fabrication are provided. The methods for fabricating a programmable device include, for example forming at least one via opening in a layer of the programmable device and providing a catalyzing material over a lower surface of the at least one via opening; forming a plurality of nanowires or nanotubes in the at least one via opening using the catalyzing material as a catalyst for the forming of the plurality of nanowires or nanotubes; and providing a dielectric material in the at least one via opening so that the dielectric material surrounds the plurality of nanowires or nanotubes. The programmable device may, in subsequent or separate programming steps, have programming of the programmable device made permanent via thermal oxidation of the dielectric material and the plurality of nanowires or nanotubes, leaving a non-conducting material behind in the at least one via opening.
摘要:
Disclosed herein are resistive switching devices having, e.g., an amorphous layer comprised of an insulating aluminum-based or silicon-based material and a conducting material. The amorphous layer may be disposed between two or more electrodes and be capable of switching between at least two resistance states. Circuits and memory devices including resistive switching devices are also disclosed, and a composition of matter involving an insulating aluminum-based or an silicon-based material and a conducting material. Also disclosed herein are methods for switching the resistance of an amorphous material.
摘要:
A solvent composition comprising an organic solvent; dispersed nanoparticles; and a non-volatile electrolyte is provided. A method of forming a liquid composite composition is provided.
摘要:
An electronic device includes a semiconductor memory. The semiconductor memory includes a plurality of planes vertically stacked over a substrate. Each plane includes one or more cell mats. Each cell mat includes lower lines, upper lines crossing the lower lines, and variable resistance elements positioned in intersection regions of the lower lines and the upper lines, respectively. Lower contacts are coupled to the lower lines, respectively, and, in a plan view, overlap with a boundary region between half of the upper lines and the other half number of the upper lines. Upper contacts are coupled to the upper lines, respectively, and overlap with a boundary region between a half number of the lower lines and the other half number of the lower lines. One cell mat of an upper plane is vertically stacked over a lower plane to overlap with two adjacent cell mats of the lower plane.