Abstract:
Systems having a resistive memory device having control circuitry configured to build a data word from remapped data bits from a received data word such that pairs of data bits are mapped to adjacent locations in the built data word, the control circuitry further configured to program the built data word to memory cells coupled to a selected data line such that, during a same program operation, pairs of adjacent memory cells along the selected data line are programmed with the pairs of data.
Abstract:
Systems having a resistive memory device having control circuitry configured to build a data word from remapped data bits from a received data word such that pairs of data bits are mapped to adjacent locations in the built data word, the control circuitry further configured to program the built data word to memory cells coupled to a selected data line such that, during a same program operation, pairs of adjacent memory cells along the selected data line are programmed with the pairs of data.
Abstract:
Phase change material can be set with a multistage set process. Set control logic can heat a phase change semiconductor material (PM) to a first temperature for a first period of time. The first temperature is configured to promote nucleation of a crystalline state of the PM. The control logic can increase the temperature to a second temperature for a second period of time. The second temperature is configured to promote crystal growth within the PM. The nucleation and growth of the crystal set the PM to the crystalline state. The multistage ramping up of the temperature can improve the efficiency of the set process relative to traditional approaches.
Abstract:
Memories having a plurality of resistive storage elements in a shared resistance variable material, a plurality of select devices coupled to the plurality of resistive storage elements in a one-to-one relationship and sense circuitry coupled to the plurality of select devices.
Abstract:
A non-volatile memory element with thermal-assisted switching control is disclosed. The non-volatile memory element is disposed on a thermal inkjet resistor. Methods for manufacturing the combination and methods of using the combination are also disclosed.
Abstract:
A method for fabricating a semiconductor device and a method for operating the semiconductor device are provided. The method for fabricating a semiconductor device includes forming a first electrode layer; forming a material layer, including conductive path components, over the first electrode layer; forming a second electrode layer over the material layer; performing a forming operation, which includes initially creating, in the material layer, a conductive path that electrically connects the first electrode layer to the second electrode layer by applying one of a predetermined voltage and a predetermined current between the first and second electrode layers, the conductive path including the conductive path components; and performing a first heat-treatment process at a predetermined temperature that removes some of the conductive path components from the conductive path, wherein a resistance state of the material layer changes based on the creation or dissolution of the conductive paths.
Abstract:
Phase change material can be set with a multistage set process. Set control logic can heat a phase change semiconductor material (PM) to a first temperature for a first period of time. The first temperature is configured to promote nucleation of a crystalline state of the PM. The control logic can increase the temperature to a second temperature for a second period of time. The second temperature is configured to promote crystal growth within the PM. The nucleation and growth of the crystal set the PM to the crystalline state. The multistage ramping up of the temperature can improve the efficiency of the set process relative to traditional approaches.
Abstract:
A non-volatile memory element with thermal-assisted switching control is disclosed. The non-volatile memory element is disposed on a thermal inkjet resistor. Methods for manufacturing the combination and methods of using the combination are also disclosed.
Abstract:
Heat-trapping bulk layers or thermal-boundary film stacks are formed between a heat-assisted active layer and an associated electrode to confine such transient heat to the active layer in a heat-assisted device (e.g., certain types of resistance-switching and selector elements used in non-volatile memory. Preferably, the heat-trapping layers or thermal-boundary stacks are electrically conductive while being thermally insulating or reflective. Heat-trapping layers use bulk absorption and re-radiation to trap heat. Materials may include, without limitation, chalcogenides with Group 6 elements. Thermal-boundary stacks use reflection from interfaces to trap heat and may include film layers as thin as 1-5 monolayers. Effectiveness of a thermal-boundary stack depends on the thermal impedance mismatch between layers of the stack, rendering thermally insulating bulk materials optional for thermal-boundary stack components.
Abstract:
Resistance variable memory cells having a plurality of resistance variable materials and methods of operating and forming the same are described herein. As an example, a resistance variable memory cell can include a plurality of resistance variable materials located between a plug material and an electrode material. The resistance variable memory cell also includes a first conductive material that contacts the plug material and each of the plurality of resistance variable materials and a second conductive material that contacts the electrode material and each of the plurality of resistance variable materials.